Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Rank of Cutting-Plane Proof Systems

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6080))

Abstract

We introduce a natural abstraction of propositional proof systems that are based on cutting planes. This new class of proof systems includes well-known operators such as Gomory-Chvátal cuts, lift-and-project cuts, Sherali-Adams cuts (for a fixed hierarchy level d), and split cuts. The rank of such a proof system corresponds to the number of rounds needed to show the nonexistence of integral solutions. We exhibit a family of polytopes without integral points contained in the n-dimensional 0/1-cube that has rank Ω(n/logn) for any proof system in our class. In fact, we show that whenever a specific cutting-plane based proof system has (maximal) rank n on a particular family of instances, then any cutting-plane proof system in our class has rank Ω(n/logn) for this family. This shows that the rank complexity of worst-case instances is intrinsic to the problem, and does not depend on specific cutting-plane proof systems, except for log factors. We also construct a new cutting-plane proof system that has worst-case rank O(n/logn) for any polytope without integral points, implying that the universal lower bound is essentially tight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E., Ceria, S., Cornuejols, G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)

    Article  MathSciNet  Google Scholar 

  2. Bockmayr, A., Eisenbrand, F., Hartmann, M., Schulz, A.: On the Chvátal rank of polytopes in the 0/1 cube. Discrete Applied Mathematics 98, 21–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonet, M., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 575–584 (1995)

    Google Scholar 

  4. Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams relaxations. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 283–292 (2009)

    Google Scholar 

  5. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear algebra and its applications 114, 455–499 (1989)

    Article  MathSciNet  Google Scholar 

  7. Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Mathematics of Operations Research 26, 19–30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathematical Programming 112, 3–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cornuejols, G., Li, Y.: Elementary closures for integer programs. Operations Research Letters 28, 1–8 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cornuéjols, G., Li, Y.: A connection between cutting plane theory and the geometry of numbers. Mathematical Programming 93, 123–127 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cornuéjols, G., Li, Y.: On the rank of mixed 0,1 polyhedra. Mathematical Programming 91, 391–397 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dantchev, S.: Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof systems. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 311–317 (2007)

    Google Scholar 

  13. Dash, S.: An exponential lower bound on the length of some classes of branch-and-cut proofs. Mathematics of Operations Research 30, 678–700 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eisenbrand, F., Schulz, A.: Bounds on the Chvátal rank of polytopes in the 0/1-cube. Combinatorica 23, 245–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2-o(1) for vertex cover SDPs in the Lovász-Schrijver hierarchy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 702–712 (2007)

    Google Scholar 

  16. Goemans, M., Tuncel, L.: When does the positive semidefiniteness constraint help in lifting procedures? Mathematics of Operations Research 26, 796–815 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gomory, R.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gomory, R.: Solving linear programming problems in integers. In: Bellman, R., Hall, M. (eds.) Proceedings of Symposia in Applied Mathematics X, pp. 211–215. American Mathematical Society, Providence (1960)

    Google Scholar 

  19. Gomory, R.: An algorithm for integer solutions to linear programs. In: Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  20. Lasserre, J.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mathieu, C., Sinclair, A.: Sherali-Adams relaxations of the matching polytope. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 293–302 (2009)

    Google Scholar 

  23. Pokutta, S., Schulz, A.: A note on 0/1 polytopes without integral points and with maximal rank (2009) (preprint)

    Google Scholar 

  24. Pokutta, S., Schulz, A.: On the connection of the Sherali-Adams closure and border bases (2009) (submitted)

    Google Scholar 

  25. Pudlak, P.: On the complexity of propositional calculus. In: Sets and Proofs, Invited Papers from Logic Colloquium ’97, pp. 197–218. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  26. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 593–602 (2008)

    Google Scholar 

  27. Schoenebeck, G., Trevisan, L., Tulsiani, M.: Tight integrality gaps for Lovász-Schrijver LP relaxations of vertex cover and max cut. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 302–310 (2007)

    Google Scholar 

  28. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pokutta, S., Schulz, A.S. (2010). On the Rank of Cutting-Plane Proof Systems. In: Eisenbrand, F., Shepherd, F.B. (eds) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science, vol 6080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13036-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13035-9

  • Online ISBN: 978-3-642-13036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics