Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extending Metric Multidimensional Scaling with Bregman Divergences

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

We investigate multidimensional scaling with Bregman divergences and show that the Sammon mapping can be thought of as a truncated Bregman multidimensional scaling (BMDS). We show that the full BMDS improves upon the Sammon mapping on some standard data sets and investigate the reasons underlying this improvement. We then introduce two families of BMDS which use opposite strategies to create good mappings of standard data sets and investigate these opposite strategies analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Chen, L., Buja, A.: Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing and Proximity Analysis. PhD thesis, University of Pennsylvania (2006)

    Google Scholar 

  3. Demartines, P., Hrault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8(1) (1997)

    Google Scholar 

  4. Sammon, J.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computing 18 (1969)

    Google Scholar 

  5. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J., Crowe, M., Fyfe, C. (2010). Extending Metric Multidimensional Scaling with Bregman Divergences. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13025-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13025-0_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13024-3

  • Online ISBN: 978-3-642-13025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics