Nothing Special   »   [go: up one dir, main page]

Skip to main content

Curvature Estimation for Discrete Curves Based on Auto-adaptive Masks of Convolution

  • Conference paper
Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6026))

  • 721 Accesses

Abstract

We propose a method that we call auto-adaptive convolution which extends the classical notion of convolution in pictures analysis to function analysis on a discrete set. We define an averaging kernel which takes into account the local geometry of a discrete shape and adapts itself to the curvature. Its defining property is to be local and to follow a normal law on discrete lines of any slope. We used it together with classical differentiation masks to estimate first and second derivatives and give a curvature estimator of discrete functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andres, E.: Modélisation Analytique Discrète d’Objets Géométriques. Habilitation à diriger des recherches, UFR Sciences Fondamentale et Appliquées, Université de Poitiers, France (2000)

    Google Scholar 

  2. Billingsley, P.: Convergence of probability measures, 2nd edn. Wiley Series in Probability and Statistics. John Wiley & Sons Inc., New York (1999)

    MATH  Google Scholar 

  3. Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 299–317. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–257 (2004)

    Article  Google Scholar 

  5. Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.): DGCI 2008. LNCS, vol. 4992. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  6. Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. IJPRAI 9(4), 635–662 (1995)

    Google Scholar 

  7. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Fourey, S., Malgouyres, R.: Normals and curvature estimation for digital surfaces based on convolutions. In: Coeurjolly, D., et al. (eds.) [5], pp. 287–298

    Google Scholar 

  9. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape Analysis Using the Auto Diffusion Function. Computer Graphics Forum 28(5), 1405–1413 (2009)

    Article  Google Scholar 

  10. Konrad, P., Marc, A., Michael, K. (eds.): Symposium on Graphics Processing. Eurographics Association (2009)

    Google Scholar 

  11. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  12. Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Coeurjolly, et al. (eds.) [5], pp. 370–379

    Google Scholar 

  13. Matas, J., Shao, Z., Kittler, J.: Estimation of curvature and tangent direction by median filtered differencing. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 83–88. Springer, Heidelberg (1995)

    Google Scholar 

  14. Nguyen, T.P., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experiment. Math. 2(1), 15–36 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Reveillès, J.P.: Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France (1991)

    Google Scholar 

  17. Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers 23(12), 1264–1269 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Konrad, et al. (eds.) [10], pp. 1383–1392, http://www.eg.org/EG/DL/CGF/volume28/issue5/v28i5pp1383-1392.pdf

  19. Worring, M., Smeulders, A.W.: Digital curvature estimation. CVGIP: Image Understanding 58(3), 366–382 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiorio, C., Mercat, C., Rieux, F. (2010). Curvature Estimation for Discrete Curves Based on Auto-adaptive Masks of Convolution. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics