Abstract
3D meshes have been widely used in graphics and simulation applications for representing 3D objects. They generally require a huge amount of data for storage and/or transmission in the raw data format. Since most applications demand compact storage, fast transmission and efficient processing of 3D meshes, many algorithms have been proposed in the literature to compress 3D meshes efficiently since the early 1990s [1]. Because most of the 3D models in use are polygonal meshes, most of the published papers focus on coding that type of data, which is composed of two main components: connectivity data and geometry data. This chapter discusses 3D mesh compression technologies that have been developed over the last decade, with the main focus on triangle mesh compression technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
P. Alliez and C. Gotsman. Recent advances in compression of 3D meshes. In: Proceedings of the Symposium on Multiresolution in Geometric Modeling, 2003.
J. L. Peng, C. S. Kim and C. C. Jay Kuo. Technologies for 3D mesh compression: A survey. Journal of Visual Communication and Image Representation, 2005, 16(6):688–733.
ISO/IEC 14772-1. The Virtual Reality Modeling Language VRML. 1997.
G. Taubin, W. Horn, F. Lazaru, et al. Geometry coding and VRML. Proceedings of the IEEE, 1998, 96(6):1228–1243.
G. Taubin and J. Rossignac. Geometric compression through topological surgery. ACM Trans. Graph., 1998, 17(2):84–115.
ISO/IEC 14496-2. Coding of Audio-Visual Objects: Visual. 2001.
O. Devillers and P. Gandoin. Geometric compression for interactive transmission. In: Proceedings of the IEEE Conference on Visualization, 2000, pp. 319–326.
G. Taubin. 3D geometry compression and progressive transmission. EUROGRAPHICS—State of the Art Report, 1999.
D. Shikhare. State of the art in geometry compression. Technical Report, National Centre for Software Technology, India, 2000.
C. Gotsman, S. Gumhold and L. Kobbelt. Simplification and compression of 3D meshes. Tutorials on Multiresolution in Geometric Modelling, 2002.
J. Gross and J. Yellen. Graph Theory and Its Applications. CRC Press, 1998.
M. Deering. Geometry compression. ACM SIGGRAPH, 1995, pp. 13–20.
M. Chow. Optimized geometry compression for real-time rendering. IEEE Visualization, 1997, pp. 347–354.
E. M. Arkin, M. Held, J. S. B. Mitchell, et al. Hamiltonian triangulations for fast rendering. Visual Computation, 1996, 12(9):429–444.
F. Evans, S. S. Skiena and A. Varshney. Optimizing triangle strips for fast rendering. IEEE Visualization, 1996, pp. 319–326.
G. Turan. On the succinct representations of graphs. Discr. Appl. Math, 1984, 8:289–294.
C. L. Bajaj, V. Pascucci and G. Zhuang. Single resolution compression of arbitrary triangular meshes with properties. Comput. Geom. Theor. Appl., 1999, 14:167–186.
C. Bajaj, V. Pascucci and G. Zhuang. Compression and coding of large CAD models. Technical Report, University of Texas, 1998.
C. Touma and C. Gotsman. Triangle mesh compression. In: Proceedings of Graphics Interface, 1998, pp. 26–34.
P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3D meshes. EUROGRAPHICS, 2001, pp. 480–489.
M. Schindler. A fast renormalization for arithmetic coding. In: Proceedings of IEEE Data Compression Conference, 1998, p. 572.
W. Tutte. A census of planar triangulations. Can. J. Math., 1962, 14:21–38.
C. Gotsman. On the optimality of valence-based connectivity coding. Computer Graphics Forum, 2003, 22(1):99–102.
S. Gumhold and W. Straßer. Real time compression of triangle mesh connectivity. ACM SIGGRAPH, 1998, pp. 133–140.
S. Gumhold. Improved cut-border machine for triangle mesh compression. Paper presented at The Erlangen Workshop’99 on Vision, Modeling and Visualization, 1999.
J. Rossignac. Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Vis. Comput. Graph., 1999, 5(1):47–61.
D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar triangle graphs. Paper presented at The 11th Canadian Conference on Computational Geometry, 1999, pp. 146–149.
S. Gumhold. New bounds on the encoding of planar triangulations. Technical Report WSI-2000-1, Wilhelm-Schickard-Institut f ür Informatik, University of T übingen, Germany, 2000.
J. Rossignac and A. Szymczak. Wrap and zip decompression of the connectivity of triangle meshes compressed with edgebreaker. Comput. Geom., 1999, 14(1–3):119–135.
M. Isenburg and J. Snoeyink. Spirale reversi: reverse decoding of the Edgebreaker encoding. Paper presented at The 12th Canadian Conference on Computational Geometry, 2000, pp. 247–256.
A. Szymczak, D. King and J. Rossignac. An Edgebreaker-based efficient compression scheme for regular meshes. In: Proceedings of 12th Canadian Conference on Computational Geometry, 2000, pp. 257–264.
M. Isenburg. Triangle strip compression. In: Proceedings of the Graphics Interface, 2000, pp. 197–204.
B. S. Jong, W. H. Yang, J. L. Tseng, et al. An efficient connectivity compression for triangular meshes. In: Proceedings of the Fourth Annual ACIS International Conference on Computer and Information Science (ICIS’05), 2005.
A. Guéziec, G. Taubin, F. Lazarus, et al. Converting sets of polygons to manifold surfaces by cutting and stitching. IEEE Visualization, 1998, pp. 383–390.
H. Hoppe. Progressive meshes. ACM SIGGRAPH, 1996, pp. 99–108.
H. Hoppe, T. DeRose, T. Duchamp, et al. Mesh optimization. ACM SIGGRAPH, 1993, pp. 19–25.
H. Hoppe. Efficient implementation of progressive meshes. Comput. Graph, 1998, 22(1):27–36.
J. Popovic and H. Hoppe. Progressive simplicial complexes. ACM SIGGRAPH, 1997, pp. 217–224.
G. Taubin, A. Gueziec, W. Horn, et al. Progressive forest split compression. ACM SIGGRAPH, 1998, pp. 123–132.
G. Taubin. A signal processing approach to fair surface design. ACM SIGGRAPH, 1995, pp. 351–358.
R. Pajarola and J. Rossignac. Compressed progressive meshes. IEEE Trans. Vis. Comput. Graph., 2000, 6(1):79–93.
N. Dyn, D. Levin and J. A. Gregory. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph., 1990, 9(2):160–169.
D. Zorin, P. Schröder and W. Sweldens. Interpolating subdivision for meshes with arbitrary topology. ACM SIGGRAPH, 1996, pp. 189–192.
R. Pajarola and J. Rossignac. Squeeze: fast and progressive decompression of triangle meshes. In: Proceedings of Computer Graphics International Conference, 2000, pp. 173–182.
R. Pajarola. Fast Huffman code processing. Technical Report UCI-ICS-99-43, Information and Computer Science, UCI, 1999.
W. J. Schroeder, J. A. Zarge and W. E. Lorensen. Decimation of triangle meshes. ACM SIGGRAPH, 1992, pp. 65–70.
M. Soucy and D. Laurendeau. Multiresolution surface modeling based on hierarchical triangulation. Comput. Vis. Image Understand., 1996, 63(1):1–14.
D. Cohen-Or, D. Levin and O. Remez. Progressive compression of arbitrary triangular meshes. IEEE Visualization, 1999, pp. 67–72.
P. Alliez and M. Desbrun. Progressive encoding for lossless transmission of triangle meshes. ACM SIGGRAPH, 2001, pp. 198–205.
J. Li and C. C. J. Kuo. Progressive coding of 3-D graphic models. In: Proc. of the IEEE, 1998, 86(6):1052–1063.
C. Bajaj, V. Pascucci and G. Zhuang. Progressive compression and transmission of arbitrary triangular meshes. IEEE Visualization, 1999, pp. 307–316.
C. L. Bajaj, E. J. Coyle and K. N. Lin. Arbitrary topology shape reconstruction from planar cross sections. Graph. Models Image Proc., 1996, 58(6):524–543.
T. S. Gieng, B. Hamann, K. I. Joy, et al. Constructing hierarchies for triangle meshes. IEEE Trans. Vis. Comput. Graph., 1998, 4(2):145–161.
A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992.
H. Lee, P. Alliez and M. Desbrun. Angle-analyzer: a triangle-quad mesh codec. In: Eurographics Conference Proceedings, 2002, pp. 383–392.
M. Isenburg and P. Alliez. Compressing polygon mesh geometry with parallelogram prediction. In: IEEE Visualization Conference Proceedings, 2002, pp. 141–146.
B. Kronrod and C. Gotsman. Optimized compression of triangle mesh geometry using prediction trees. In: Proceedings of 1st International Symposium on 3D Data Processing, Visualization and Transmission, 2002, pp. 602–608.
R. Cohen, D. Cohen-Or and T. Ironi. Multi-way geometry encoding. Technical Report, 2002.
D. Shikhare, S. Bhakar and S. P. Mudur. Compression of large 3D engineering models using automatic discovery of repeating geometric features. In: Proceedings of 6th International Fall Workshop on Vision, Modeling and Visualization, 2001.
P. M. Gandoin and O. Devillers. Progressive lossless compression of arbitrary simplicial complexes. ACM Trans. Graph., 2002, 21(3):372–379.
O. Devillers and P. Gandoin. Geometric compression for interactive transmission. IEEE Visualization, 2000, pp. 319–326.
I. H. Witten, R. M. Neal and J. G. Cleary. Arithmetic coding for data compression. Commun. ACM, 1987, 30(6):520–540.
J. Peng and C. C. J. Kuo. Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans. Graph., 2005, 24(3):609–616.
N. S. Jayant and P. Noll. Digital Coding of Waveforms—Principles and Applications to Speech and Video. Prentice Hall, 1984.
Z. Karni and C. Gotsman. Spectral compression of mesh geometry. ACM SIGGRAPH, 2000, pp. 279–286.
Z. Karni and C. Gotsman. 3D mesh compression using fixed spectral bases. In: Proceedings of the Graphics Interface, 2001, pp. 1–8.
O. Sorkine, D. Cohen-Or and S. Toldeo. High-pass quantization for mesh encoding. In: Proceedings of Eurographics Symposium on Geometry Processing, 2003.
M. Lounsbery, T. D. Derose and J. Warren. Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics, 1997, 16(1):34–73.
A. Khodakovsky, P. Schröder and W. Sweldens. Progressive geometry compression. ACM SIGGRAPH, 2000, pp. 271–278.
A. W. F. Lee, W. Sweldens, P. Schröd er, et al. MAPS: multiresolution adaptive parametrization of surfaces. ACM SIGGRAPH, 1998, pp. 95–104.
C. Loop. Smooth subdivision surfaces based on triangles. Master’s Thesis, Department of Mathematics, University of Utah, 1987.
A. Said and W. A. Pearlman. A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol., 1996, 6(3):243–250.
A. Khodakovsky and I. Guskov. Normal mesh compression. Geometric Modeling for Scientific Visualization, Springer-Verlag, 2002.
I. Guskov, K. Vidimce, W. Sweldens, et al. Normal meshes. ACM SIGGRAPH, 2000, pp. 95–102.
F. Payan and M. Antonini. Multiresolution 3D mesh compression. Proceedings of IEEE International Conference in Image Processing, 2002, pp. 245–248.
C. Parisot, M. Antonini and M. Barlaud. Optimal nearly uniform scalar quantizer design for wavelet coding. In: Proc. of SPIE VCIP Conference, 2002.
C. Parisot, M. Antonini and M. Barlaud. Model-based bit allocation for JPEG 2000. In: Proc. of EUSIPCO, 2002.
R. Chen, X. Luo and H. Xu. Geometric compression of a quadrilateral mesh. Computers and Mathematics with Applications, 2008, 56:1597–1603.
X. Gu, S. J. Gortler and H. Hoppe. Geometry images. ACM SIGGRAPH, 2002, pp. 355–361.
P. Sander, S. Gortler, J. Snyder, et al. Signal-specialized parametrization. Technical Report MSR-TR-2002-27, Microsoft Research, 2002.
E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Trans. Graph., 2003, 22(3):340–349.
H. Hoppe and E. Praun. Shape compression using spherical geometry images. In: N. Dodgson, M. Floater, M. Sabin (Eds.), Advances in Multiresolution for Geometric Modelling, Springer-Verlag, 2005, pp. 27–46.
Y. Linde, A. Buzo and R. M. Gray. An algorithm for vector quantizer design. IEEE Trans. Commun., 1980, 28(1):84–95.
E. S. Lee and H. S. Ko. Vertex data compression for triangular meshes. In: Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, 2000, pp. 225–234.
P. H. Chou and T. H. Meng. Vertex data compression through vector quantization. IEEE Trans. Vis. Comput. Graph., 2002, 8(4):373–382.
U. Bayazit, O. Orcay, U. Konurand, et al. Predictive vector quantization of 3-D mesh geometry by representation of vertices in local coordinate systems. Journal of Visual Communication & Image Representation, 2007, 18(4):341–353.
R. P. Rao and W. A. Pearlman. Alphabet-and entropy-constrained vector quantization of image pyramids. Opt. Eng., 1991, 30:865–872.
Z. M. Lu, J. S. Pan and S. H. Sun. Efficient codevector search algorithm based on Hadamard transform. Electronics Letters, 2000, 36(16):1364–1365.
Z. Li and Z. M. Lu. Fast codevector search scheme for 3D mesh model vector quantization. IET Electronics Letters, 2008, 44(2):104–105.
C. D. Bei and R. M. Gray. An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans. Commun., 1985, 33(10):1132–1133.
L. Guan and M. Kamel. Equal-average hyperplane partitioning method for vector quantization of image data. Pattern Recognition Letters, 1992, 13(10):693–699.
H. Lee and L. H. Chen. Fast closest codevector search algorithms for vector quantization. Signal Processing, 1995, 43:323–331.
Z. M. Lu and Z. Li. Dynamically restricted codebook based vector quantization scheme for mesh geometry compression. Signal Image and Video Processing, 2008, 2(3):251–260.
S. W. Ra and J. K. Kim. Fast mean-distance-ordered partial codebook search algorithm for image vector quantization. IEEE. Transactions on Circuits and Systems-II, 1993, 40(9):576–579.
Z. Li, Z. M. Lu and L. Sun. Dynamic extended codebook based vector quantization scheme for mesh geometry compression. Paper presented at The IEEE Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP2007), 2007, Vol. 1, pp. 178–181.
S. Valette and R. Prost. Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Transactions on Visualizations and Computer Graphics, 2004, 10(2):123–129.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2010 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Yu, F., Luo, H., Lu, Z., Wang, P. (2010). 3D Mesh Compression. In: Three-Dimensional Model Analysis and Processing. Advanced Topics in Science and Technology in China, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12651-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-12651-2_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12650-5
Online ISBN: 978-3-642-12651-2
eBook Packages: Computer ScienceComputer Science (R0)