Abstract
The evolutionary approach in the design optimisation ofMEMS is a novel and promising research area. The problem is of a multi-objective nature; hence, multi-objective evolutionary algorithms (MOEA) are used. The literature shows that two main classes of MOEA have been used in MEMS evolutionary design Optimisation, NSGA-II and MOGA-II. However, no one has provided a justification for using either NSGA-II or MOGA-II. This paper presents a comparative investigation into the performance of these two MOEA on a number of MEMS design optimisation case studies. MOGA-II proved to be superior to NSGA-II. Experiments are, herein, described and results are discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fujita, H.: Two Decades of MEMS– from Surprise to Enterprise. In: Proceedings of MEMS, Kobe, Japan, January 21-25 (2007)
Hsu, T.R.: MEMS and Microsystems, 2nd edn. Wiley, Chichester (2008)
Isoda, T., Ishida, Y.: Seperation of Cells using Fluidic MEMS Device and a Quantitative Analysis of Cell Movement. Transactions of the Institute of Electrical Engineering of Japan 126(11), 583–589 (2006)
Hostis, F.l., Green, N.G., Morgan, H., Akaisi, M.: Solid state AC electroosmosis micro pump on a Chip. In: International Conference on Nanoscience and Nanotechnology, ICONN, Brisbane, Qld, July 2006, pp. 282–285 (2006)
Hao, Y., Zhang, D.: Silicon-based MEMS process and standardization. In: Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology 2004, vol. 3, pp. 1835–1838 (2004)
Fedder, G.: Structured Design of Integrated MEM. In: Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS 1999, Orlando, FL, USA, pp. 1–8 (1999)
Senturia, S.D.: Microsystem Design. Kluwer Academic Publishers, Dordrecht (2001)
Haronain, D.: Maximizing microelectromechanical sensor and actuator sensitivity by optimizing geometry. Sensors and Actuators A 50, 223–236 (1995)
Iyer, S., Mukherjee, T., Fedder, G.: Automated Optimal Synthesis of Microresonators. In: Solid-State Sensors and Actuators, Chicago, IL, pp. 12–19 (1997)
Kamalian, R., Zhou, N., Agogino, A.M.: A Comparison of MEMS Synthesis Techniques. In: Proceedings of the 1st Pacific Rim Workshop on Transducers and Micro/Nano Technologies, Xiamen, China, July 22-24, pp. 239–242 (2002)
Li, H., Antonsson, E.K.: Evolutionary Techniques in MEMS Synthesis. In: Proc. DETC 1998, 1998 ASME Design Engineering Technical Conferences, Atlanta, GA (1998)
Zhou, N., Agogino, A.M., Pister, K.S.: Automated Design Synthesis for Micro-Electro-Mechanical Systems (MEMS). In: Proceedings of the ASME Design Automation Conference, ASME CD ROM, Montreal, Canada, September 29-October 2 (2002)
Kamalian, R.H., Takagi, H., Agogino, A.M.: Optimized Design of MEMS by Evolutionary Multi-objective Optimization with Interactive Evolutionary Computation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1030–1041. Springer, Heidelberg (2004)
Zhang, Y., Kamalian, R., Agogino, A.M., Sequin, C.: Hierarchical MEMS Synthesis and Optimization. In: Varadan, V.K. (ed.) Proceedings of SPIE, Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology. International Society for Optical Engineering, CD ROM. Paper 5763-12, vol. 5763, pp. 96–106 (2005)
Zhou, N., Zhu, B., Agogino, A.M., Pister, K.: Evolutionary Synthesis of MEMS (Microelectronic Mechanical Systems) Design. In: Proceedings of ANNIE 2001, IEEE Neural Networks Council and Smart Engineering Systems Laboratory, Marriott Pavilion Hotel, St. Louis, Missouri, November 4-7, vol. 11, pp. 197–202. ASME Press (2001)
Benkhelifa, E., Farnsworth, M., Tiwari, A., Zhu, M.: An Integrated Framework for MEMS Design Optimisation using modeFrontier. In: EnginSoft International Conference 2009, CAE Technologies For Industry and ANSYS Italian Conference 2009 (2009)
Lohn, J.D., Kraus, W.F., Hornby, G.S.: Automated Design of a MEMS Resonator. In: Proceedings of the Congress on Evolutionary Computation, pp. 3486–3491 (2007)
Poles, S.: MOGA-II An Improved Multi-Objective Genetic Algorithm. Technical report 2003-006, Esteco, Trieste (2003)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schonauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Benkhelifa, E., Farnsworth, M., Bandi, G., Tiwari, A., Zhu, M., Ramsden, J.: Design and Optimisation of Microelectromechanical Systems: A Review of the State-of-the-Art. International Journal of Design Engineering, Special Issue Evolutionary Computing for Engineering Design (2009) (accepted to be published)
Zhang, Y., Kamalian, R., Agogino, A.M., Séquin, C.H.: Design Synthesis of Microelectromechanical Systems Using Genetic Algorithms with Component-Based Geno-type Representation. In: Proc. of GECCO 2006 (Genetic and Evolutionary Computation Conference), Seattle, July 8-12, vol. 1, pp. 731–738 (2006) ISBN 1-59593 187-2
Poloni, C., Pediroda, V.: GA coupled with computationally expensive simulations: tools to improve efficiency. In: Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 267–288. John Wiley and Sons, England (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Benkhelifa, E., Farnsworth, M., Tiwari, A., Zhu, M. (2010). Evolutionary Algorithms for Planar MEMS Design Optimisation: A Comparative Study. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-12538-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12537-9
Online ISBN: 978-3-642-12538-6
eBook Packages: EngineeringEngineering (R0)