Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two-Grid Decoupling Method for Elliptic Problems on Disjoint Domains

  • Conference paper
Large-Scale Scientific Computing (LSSC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5910))

Included in the following conference series:

  • 2149 Accesses

Abstract

We propose a two-grid finite element method for solving elliptic problems on disjoint domains. With this method, the solution of the multi-component domain problem(simple example — two disjoint rectangles) on a fine grid is reduced to the solution of the original problem on a much coarser grid together with solution of several problems (each on a single-component domain) on fine meshes. The advantage is the computational cost although the resulting solution still achieves asymptotically optimal accuracy. Numerical experiments demonstrate the efficiency of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axelsson, O.: On mesh independence and Newton methods. Appl. Math. 38(4–5), 249–265 (1993)

    MATH  MathSciNet  Google Scholar 

  2. Amosov, A.A.: Global solvability of a nonlinear nonstationary problem with a nonlocal boundary condition of radiative heat transfer type. Diff. Eqns. 41, 96–109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Druet, P.E.: Weak solutions to a time-dependent heat equation with nonlocal radiation condition and right hand side L p ( p ≥ 1 ) . WIAS Preprint 1253 (2008)

    Google Scholar 

  4. Jin, J., Shu, S., Xu, J.: A two-grid discretization method for decoupling systems of partial differential equations. Math. Comp. 75, 1617–1626 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jovanović, B.S., Vulkov, L.G.: Numerical solution of a parabolic transmission problem. IMA J. Numer. Anal. (2009) (to appear)

    Google Scholar 

  6. Jovanović, B.S., Vulkov, L.G.: Numerical solution of a hyperbolic transmission problem. Comp. Meth. in Appl. Math. 4(4), 374–385 (2009)

    Google Scholar 

  7. Koleva, M.: Finite element solution of boundary value problems with nonlocal Jump Conditions. J. of Math. Modl. and Anal. 13(3), 383–400 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koleva, M., Vukov, L.: A two-grid approximation of an interface problem for the nonlinear Poisson-Boltzmann equation. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2008. LNCS, vol. 5434, pp. 369–376. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Mu, M., Xu, J.: A Two-grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow. SIAM J. Numerical Analysis 45, 1801–1813 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tikhonov, A.N.: On functional equations of the Volterrra type and their applications to someproblems of mathematical physics. Byull. Mosk. Gos. Univ., Ser. Mat. Mekh. 1(8), 1–25 (1938)

    MathSciNet  Google Scholar 

  11. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM Journal on Numerical Analysis 33, 1759–1777 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koleva, M.N., Vulkov, L.G. (2010). Two-Grid Decoupling Method for Elliptic Problems on Disjoint Domains. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12535-5_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12534-8

  • Online ISBN: 978-3-642-12535-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics