Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mimetic Least-Squares Spectral/hp Finite Element Method for the Poisson Equation

  • Conference paper
Large-Scale Scientific Computing (LSSC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5910))

Included in the following conference series:

Abstract

Mimetic approaches to the solution of partial differential equations (PDE’s) produce numerical schemes which are compatible with the structural properties – conservation of certain quantities and symmetries, for example – of the systems being modelled. Least Squares (LS) schemes offer many desirable properties, most notably the fact that they lead to symmetric positive definite algebraic systems, which represent an advantage in terms of computational efficiency of the scheme. Nevertheless, LS methods are known to lack proper conservation properties which means that a mimetic formulation of LS, which guarantees the conservation properties, is of great importance. In the present work, the LS approach appears in order to minimise the error between the dual variables, implementing weakly the material laws, obtaining an optimal approximation for both variables. The application to a 2D Poisson problem and a comparison will be made with a standard LS finite element scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bochev, P., Hyman, J.: Principles of mimetic discretizations of differential operators. IMA 142, 89–119 (2006)

    MathSciNet  Google Scholar 

  2. Bochev, P.: Discourse on variational and geometric aspects of stability of discretizations. 33rd Computational Fluid Dynamics Lecture Series, VKI LS 2003-2005 (2003)

    Google Scholar 

  3. Bochev, P., Robinson, A.C.: Matching algorithms with physics: exact sequences of finite element spaces. In: Estep, D., Tavener, S. (eds.) Collected lectures on preservation of stability under discretization. SIAM, Philadelphia

    Google Scholar 

  4. Bossavit, A.: On the geometry of electromagnetism. J. Japan Soc. Appl. Electromagn. & Mech. 6 (1998)

    Google Scholar 

  5. Burke, W.L.: Applied differential geometry. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  6. Demkowicz, L.: Computing with hp-adaptive finite elements, vol. 1. Chapman and Hall/CRC (2007)

    Google Scholar 

  7. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Courses (2005)

    Google Scholar 

  8. Flanders, H.: Differential forms with applications to the physical sciences. Academic Press, Inc., New York (1963)

    MATH  Google Scholar 

  9. Proot, M., Gerritsma, M.: A least-squares spectral element formulation for the Stokes problem. J. Sci. Computing 17, 285–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hiptmair, R.: Discrete Hodge operators. Numer. Math. 90, 265–289 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, B.: The least squares finite element method: theory and applications in computational fluid dynamics and electromagnetics. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  12. Kopriva, D.A., Kolias, J.H.: A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. Journal of Computational Physics 125, 244–261 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mattiussi, C.: An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology. J. Comp. Physics 133, 289–309 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Proot, M.M.J., Gerritsma, M.I.: Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. Journal of Scientific Computing 27(1-3), 389–401 (2007)

    Article  MathSciNet  Google Scholar 

  15. Tonti, E.: On the formal structure of physical theories. Consiglio Nazionale delle Ricerche, Milano (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palha, A., Gerritsma, M. (2010). Mimetic Least-Squares Spectral/hp Finite Element Method for the Poisson Equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12535-5_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12534-8

  • Online ISBN: 978-3-642-12535-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics