Abstract
Search Computing aims at opening the Web to a new class of search applications, by offering enhanced expressive and computational power. The success of Search Computing, as of any technical advance, will be measured by its impact upon the search industry and market, and this in turn will be highly influenced by reactions of Web users and developers. It is too early to anticipate such reactions – as the technology is still “under construction” – but this chapter attempts a first identification of the possible future players in the development of Search Computing applications, by grossly identifying the roles of “data source publishers” and of “application developers”, and by discussing how classical advertising-based models may support the new applications. This chapter also describes the high-level design of the prototyping environment that is currently under development and how the design will support the deployment upon high performance architectures. Finally, we describe advertising as the prevalent business model of the search engines industry, and briefly discuss the options for the evolution of such model in the context of Search Computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amazon. Elastic Compute Cloud, EC2 (2009), http://aws.amazon.com/ec2/
Hayes, B.: Cloud computing. Communications of the ACM 51(7), 9–11 (2008)
Farrell, J., Nezlek, G.S.: Rich Internet Applications The Next Stage of Application Development. In: 29th International Conference on Information Technology Interfaces, ITI 2007, June 25-28, pp. 413–418 (2007)
Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J. ACM 46(5), 720–748 (1999)
Bondi, A.B.: Characteristics of scalability and their impact on performance. In: WOSP 2000: Proceedings of the 2nd international workshop on Software and performance, pp. 195–203. ACM, New York (2000)
Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource management and scheduling in grid computing. Concurrency and Computation: Practice and Experience 14(13-15), 1507–1542 (2002)
Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)
Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally distributed web-server systems. ACM Comput. Surv. 34(2), 263–311 (2002)
Craswell, N., Crimmins, F., Hawking, D., Moffat, A.: Performance and cost trade-offs in web search. In: ADC 2004: Proceedings of the 15th Australasian database conference, pp. 161–169. Australian Computer Society, Inc., Darlinghurst (2004)
Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding UI Integration: A Survey of Problems, Technologies, and Opportunities. IEEE Internet Computing 11(3), 59–66 (2007)
Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI 2004: Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation, pp. 10–10. USENIX Association, Berkeley (2004)
Even-Dar, E., Kearns, M., Wortman, J.: Sponsored Search with Contexts. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 312–317. Springer, Heidelberg (2007)
Feng, J., Bhargava, H.K., Pennock, D.: Implementing Sponsored Search in Web Search Engines: Computational Evaluation of Alternative Mechanisms. Informs Journal on Computing (forthcoming), http://ssrn.com/abstract=721262
Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hypertext transfer protocol (1998), http:/1.1.Tech.rep.
Google. AdSense (2009), https://www.google.com/adsense/
Google. AdWords (2009), https://www.google.com/adwords/
Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4), 422–469 (2000)
Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)
Microsoft. Microsoft Advertising (2009), http://advertising.microsoft.com/
Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A.K., Weikum, G.: From centralized workflow specification to distributed workflow execution. J. Intell. Inf. Syst. 10(2), 159–184 (1998)
Narahari, Y., Garg, D., Narayanam, R., Prakash, H.: Game theoretic problems in network economics and mechanism design solutions. Springer, Berlin (2009)
Pfister, G.F.: In search of clusters, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1998)
Shafer, J.C., Agrawal, R., Lauw, H.W.: Symphony: Enabling Search-Driven Applications. In: USETIM (Using Search Engine Technology for Information Management) Workshop, VLDB Lyon (2009)
Weber, T.A., Zheng, Z.E.: A model of search intermediaries and paid referrals. Tech. rep., 02-12-01, The Wharton School, University of Pennsylvania (2003), http://papers.ssrn.com/sol3/papers.cfm?abstract_id=601903
Yahoo! APT from Yahoo! (2009), http://apt.yahoo.com/
Yahoo! SearchMarketing (2009), http://searchmarketing.yahoo.com/
Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified relational data processing on large clusters. In: SIGMOD 2007, pp. 1029–1040. ACM, New York (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bozzon, A., Brambilla, M., Ceri, S., Corcoglioniti, F., Gatti, N. (2010). Chapter 14: Building Search Computing Applications. In: Ceri, S., Brambilla, M. (eds) Search Computing. Lecture Notes in Computer Science, vol 5950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12310-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-12310-8_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12309-2
Online ISBN: 978-3-642-12310-8
eBook Packages: Computer ScienceComputer Science (R0)