Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Self-created Tree Structure Based Multi-view Face Detection

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Included in the following conference series:

  • 2715 Accesses

Abstract

This paper proposes a self-created multi-layer cascaded architecture for multi-view face detection. Instead of using predefined a priori about face views, the system automatically divides the face sample space using the kernel-based branching competitive learning (KBCL) network at different discriminative resolutions. To improve the detection efficiency, a coarse-to-fine search mechanism is involved in the procedure, where the boosted mirror pair of points (MPP) classifiers is employed to classify image blocks at different discriminatory levels. The boosted MPP classifiers can approximate the performance of the standard support vector machines in a hierarchical way, which allows background blocks to be excluded quickly by simple classifiers and the ‘face like’ parts remained to be judged by more complicate classifiers. Experimental results show that our system provides a high detection rate with a particularly low level of false positives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  2. Li, S.Z., Zhang, Z.: Floatboost Learning and Statistical Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  3. Wu, B., Ai, H., Huang, C., Lao, S.: Fast Rotation Invariant Multi-View Face Detection Based on Real AdaBoost. In: Proceeding of FGR 2004, Seoul, May 2004, pp. 79–84 (2004)

    Google Scholar 

  4. Fleuret, F., Geman, D.: Coarse-to-Fine Face Detection. International Journal of Computer Vision 41(1), 85–107 (2001)

    Article  MATH  Google Scholar 

  5. Jones, M., Viola, P.: Fast Multi-View Face Detection, MERL Technical Report, vol. 96 (July 2003)

    Google Scholar 

  6. Huang, C., Ai, H.Z., Li, Y., Lao, S.H.: High Performance Rotation Invariant Multi-view Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 671–686 (2007)

    Article  Google Scholar 

  7. Xiong, H., Swamy, M.N.S., Ahmad, M.O., King, I.: Branching Competitive Learning Network: A Novel Self-Creating Model. IEEE Transactions on Neural Networks 15(2), 417–429 (2004)

    Article  Google Scholar 

  8. Xu, R., Wunsch, D.: II: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  9. Girolami, M.: Mercer Kernel Based Clustering in Feature Space. IEEE Transactions on Neural Networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  10. Camastra, F., Verri, A.: A Novel Kernel Method for Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 801–805 (2005)

    Article  Google Scholar 

  11. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.-R., Rätsch, G., Smola, A.J.: Input Space Versus Feature Space in Kernel-Based Methods. IEEE Transactions on Neural Networks 10(5), 1000–1017 (1999)

    Article  Google Scholar 

  12. Chen, J.-H., Chen, C.-S.: Reducing SVM Classification Time Using Multiple Mirror Classifiers. IEEE Transactions on Systems, Man and Cybernetics 34(2) (2004)

    Google Scholar 

  13. Rowley, H., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 22–38 (1998)

    Article  Google Scholar 

  14. Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Applied to Faces and Cars. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 746–751 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, X., Yang, X., Xiong, H. (2010). A Novel Self-created Tree Structure Based Multi-view Face Detection. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics