Nothing Special   »   [go: up one dir, main page]

Skip to main content

Crowd Flow Characterization with Optimal Control Theory

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5995))

Included in the following conference series:

Abstract

Analyzing the crowd dynamics from video sequences is an open challenge in computer vision. Under a high crowd density assumption, we characterize the dynamics of the crowd flow by two related information: velocity and a disturbance potential which accounts for several elements likely to disturb the flow (the density of pedestrians, their interactions with the flow and the environment). The aim of this paper to simultaneously estimate from a sequence of crowded images those two quantities. While the velocity of the flow can be observed directly from the images with traditional techniques, this disturbance potential is far more trickier to estimate. We propose here to couple, through optimal control theory, a dynamical crowd evolution model with observations from the image sequence in order to estimate at the same time those two quantities from a video sequence. For this purpose, we derive a new and original continuum formulation of the crowd dynamics which appears to be well adapted to dense crowd video sequences. We demonstrate the efficiency of our approach on both synthetic and real crowd videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Helbing, D., Johansson, A., Al-Abideen, H.: Dynamics of crowd disasters: An empirical study. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 75(4), 046109 (2007)

    Google Scholar 

  2. Courty, N., Corpetti, T.: Crowd motion capture. CAVW, proc. of CASA 2007 18(4-5), 361–370 (2007)

    Google Scholar 

  3. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  4. Le-Dimet, F., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus, 97–110 (1986)

    Google Scholar 

  5. Yang, T., Li, S., Pan, Q., JingLi: Real-time multiple object tracking with occlusion handling in dynamic scenes. In: CVPR, San Diego, USA, June 2005, pp. 406–413 (2005)

    Google Scholar 

  6. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: CVPR, Washington, DC, USA, pp. 406–413 (2004)

    Google Scholar 

  7. Rabaud, V., Belongie, S.: Counting crowded moving objects. In: CVPR, New York, June 2006), pp. 705–711 (2006)

    Google Scholar 

  8. Brostow, G.J., Cipolla, R.: Unsupervised bayesian detection of independent motion in crowds. In: CVPR, NYC, June 2006, pp. 594–601 (2006)

    Google Scholar 

  9. Okuma, K., Taleghani, A., de Freitas, N., Little, J., Lowe, D.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)

    Google Scholar 

  10. Khan, Z., Balch, T., Dellaert, F.: MCMC data association and sparse factorization updating for real time multitarget tracking with merged and multiple measurements. IEEE PAMI 28(12), 1960–1972 (2006)

    Google Scholar 

  11. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: CVPR, Minneapolis, Minnesota, June 2007, pp. 1–6 (2007)

    Google Scholar 

  12. Andrade, E., Blunsden, S., Fisher, R.: Modelling crowd scenes for event detection. In: ICPR, Hong Kong, China, August 2006, pp. 175–178 (2006)

    Google Scholar 

  13. Hughes, R.L.: The flow of human crowds. Annual revue of Fluid. Mech. 20(10), 169–182 (2003)

    Article  Google Scholar 

  14. Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Papadakis, N., Corpetti, T., Mémin, E.: Dynamically consistent optical flow estimation. In: Proc. Int. Conf. Comp. Vis. (ICCV 2007), Rio de Janeiro, Brazil (October 2007)

    Google Scholar 

  16. Papadakis, N., Mémin, E.: A variational technique for time consistent tracking of curves and motion. Journal of Mathematical Imaging and Vision (2008) (available online first)

    Google Scholar 

  17. Polymenakos, L., Bertsekas, D., Tsitsiklis, J.: Implementation of efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control 43, 278–282 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kimmel, R., Sethian, J.: Optimal algorithm for shape from shading and path planning. J. of Math. Ima. and Vis. 14(3), 237–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Talagrand, O.: Variational assimilation. Adjoint equations. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  20. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, Vancouver, Canada, pp. 674–679 (1981)

    Google Scholar 

  21. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(1), 487–490 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allain, P., Courty, N., Corpetti, T. (2010). Crowd Flow Characterization with Optimal Control Theory. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5995. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12304-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12304-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12303-0

  • Online ISBN: 978-3-642-12304-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics