Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive-Scale Robust Estimator Using Distribution Model Fitting

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Included in the following conference series:

Abstract

We propose a new robust estimator for parameter estimation in highly noisy data with multiple structures and without prior information on the noise scale of inliers. This is a diagnostic method that uses random sampling like RANSAC, but adaptively estimates the inlier scale using a novel adaptive scale estimator. The residual distribution model of inliers is assumed known, such as a Gaussian distribution. Given a putative solution, our inlier scale estimator attempts to extract a distribution for the inliers from the distribution of all residuals. This is done by globally searching a partition of the total distribution that best fits the Gaussian distribution. Then, the density of the residuals of estimated inliers is used as the score in the objective function to evaluate the putative solution. The output of the estimator is the best solution that gives the highest score. Experiments with various simulations and real data for line fitting and fundamental matrix estimation are carried out to validate our algorithm, which performs better than several of the latest robust estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rousseeuw, P.J., Leroy, A.: Robust Regression and Outlier Detection. John Wiley & Sons, New York (1987)

    Book  MATH  Google Scholar 

  2. Miller, J.V., Stewart, C.V.: MUSE: Robust surface fitting using unbiased scale estimates. In: Proc. of CVPR, pp. 300–306 (1996)

    Google Scholar 

  3. Lee, K.M., Meer, P., Park, R.H.: Robust adaptive segmentation of range images. TPAMI 20, 200–205 (1998)

    Google Scholar 

  4. Stewart, C.V.: MINPRAN: A new robust estimator for computer vision. TPAMI 17, 925–938 (1995)

    Google Scholar 

  5. Yu, X., Bui, T.D., Krzyzak, A.: Robust Estimation for Range Image Segmentation and Reconstruction. TPAMI 16(5), 530–538 (1994)

    Google Scholar 

  6. Chen, H., Meer, P.: Robust regression with projection based M-estimators. In: ICCV, pp. 878–885 (2003)

    Google Scholar 

  7. Wang, H., Suter, D.: Robust Adaptive-Scale Parametric Model Estimation for Computer Vision. IEEE TPAMI 26(11), 1459–1474 (2004)

    Google Scholar 

  8. Wang, H., Mirota, D., Ishii, M., Hager, G.D.: Robust Motion Estimation and Structure Recovery from Endoscopic Image Sequences With an Adaptive Scale Kernel Consensus Estimator. In: CVPR 2008 (2008)

    Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Illingworth, J., Kittler, J.: A survey of the Hough transform, Computer Vision. In: Graphics, and Image Processing (CVGIP), vol. 44, pp. 87–116 (1988)

    Google Scholar 

  11. Subbarao, R., Meer, P.: Beyond RANSAC: User Independent Robust Regression. In: CVPRW 2006, p. 101 (2006)

    Google Scholar 

  12. Shi, J., Tomasi, C.: Good Features to Track. In: Proc. of IEEE CVPR, pp. 593–600 (1994)

    Google Scholar 

  13. Wand, M.P., Jones, M.: Kernel Smoothing. Chapman & Hall, Boca Raton (1995)

    MATH  Google Scholar 

  14. Subbarao, R., Meer, P.: pbM-Estimator source code, http://www.caip.rutgers.edu/riul/research/robust.html

  15. Luong, Q.T., Faugeras, O.D.: The fundamental matrix: Theory, algorithms, and stability analysis. Intl. Journal of Computer Vision 17(1), 43–75 (1996)

    Article  Google Scholar 

  16. Hartley, R.I.: Projective reconstruction and invariants from multiple images. IEEE Trans. on Pattern Analysis and Machine Intelligence 16(10), 1036–1041 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ngo, T.T., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yachida, M., Yagi, Y. (2010). Adaptive-Scale Robust Estimator Using Distribution Model Fitting. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics