Abstract
We propose a new robust estimator for parameter estimation in highly noisy data with multiple structures and without prior information on the noise scale of inliers. This is a diagnostic method that uses random sampling like RANSAC, but adaptively estimates the inlier scale using a novel adaptive scale estimator. The residual distribution model of inliers is assumed known, such as a Gaussian distribution. Given a putative solution, our inlier scale estimator attempts to extract a distribution for the inliers from the distribution of all residuals. This is done by globally searching a partition of the total distribution that best fits the Gaussian distribution. Then, the density of the residuals of estimated inliers is used as the score in the objective function to evaluate the putative solution. The output of the estimator is the best solution that gives the highest score. Experiments with various simulations and real data for line fitting and fundamental matrix estimation are carried out to validate our algorithm, which performs better than several of the latest robust estimators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rousseeuw, P.J., Leroy, A.: Robust Regression and Outlier Detection. John Wiley & Sons, New York (1987)
Miller, J.V., Stewart, C.V.: MUSE: Robust surface fitting using unbiased scale estimates. In: Proc. of CVPR, pp. 300–306 (1996)
Lee, K.M., Meer, P., Park, R.H.: Robust adaptive segmentation of range images. TPAMI 20, 200–205 (1998)
Stewart, C.V.: MINPRAN: A new robust estimator for computer vision. TPAMI 17, 925–938 (1995)
Yu, X., Bui, T.D., Krzyzak, A.: Robust Estimation for Range Image Segmentation and Reconstruction. TPAMI 16(5), 530–538 (1994)
Chen, H., Meer, P.: Robust regression with projection based M-estimators. In: ICCV, pp. 878–885 (2003)
Wang, H., Suter, D.: Robust Adaptive-Scale Parametric Model Estimation for Computer Vision. IEEE TPAMI 26(11), 1459–1474 (2004)
Wang, H., Mirota, D., Ishii, M., Hager, G.D.: Robust Motion Estimation and Structure Recovery from Endoscopic Image Sequences With an Adaptive Scale Kernel Consensus Estimator. In: CVPR 2008 (2008)
Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24, 381–395 (1981)
Illingworth, J., Kittler, J.: A survey of the Hough transform, Computer Vision. In: Graphics, and Image Processing (CVGIP), vol. 44, pp. 87–116 (1988)
Subbarao, R., Meer, P.: Beyond RANSAC: User Independent Robust Regression. In: CVPRW 2006, p. 101 (2006)
Shi, J., Tomasi, C.: Good Features to Track. In: Proc. of IEEE CVPR, pp. 593–600 (1994)
Wand, M.P., Jones, M.: Kernel Smoothing. Chapman & Hall, Boca Raton (1995)
Subbarao, R., Meer, P.: pbM-Estimator source code, http://www.caip.rutgers.edu/riul/research/robust.html
Luong, Q.T., Faugeras, O.D.: The fundamental matrix: Theory, algorithms, and stability analysis. Intl. Journal of Computer Vision 17(1), 43–75 (1996)
Hartley, R.I.: Projective reconstruction and invariants from multiple images. IEEE Trans. on Pattern Analysis and Machine Intelligence 16(10), 1036–1041 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ngo, T.T., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yachida, M., Yagi, Y. (2010). Adaptive-Scale Robust Estimator Using Distribution Model Fitting. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-12297-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12296-5
Online ISBN: 978-3-642-12297-2
eBook Packages: Computer ScienceComputer Science (R0)