Abstract
A cluster analysis using SOM has been performed on morphological data derived from pyramidal neurons of the somatosensory cortex of normal and transgenic mice.
Chapter PDF
Similar content being viewed by others
Keywords
References
Schierwagen, A.: Mathematical and Computational Modeling of Neurons and Neuronal Ensembles. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 159–166. Springer, Heidelberg (2009)
Alpár, A., Palm, K., Schierwagen, A., Arendt, T., Gärtner, U.: Expression of constitutively active p21H-rasVal12 in postmitotic pyramidal neurons results in increased dendritic size and complexity. J. Comp. Neurol. 467, 119–133 (2003)
Cannon, R.C.: Structure editing and conversion with cvapp (2000), http://www.compneuro.org/CDROM/nmorph/usage.html
Van Pelt, J., Schierwagen, A.: Morphological analysis and modeling of neuronal dendrites. Math. Biosciences 188, 147–155 (2004)
Schierwagen, A.: Neuronal morphology: Shape characteristics and models. Neurophysiology 40, 366–372 (2008)
Schierwagen, A., Costa, L.F., Alpár, A., Gärtner, A.U., Arendt, T.: Neuromorphological Phenotyping in Transgenic Mice: A Multiscale Fractal Analysis. In: Deutsch, A., et al. (eds.) Mathematical Modeling of Biological Systems, vol. II, pp. 191–199. Birkhuser, Boston (2007)
Scorcioni, R., Polavaram, S., et al.: L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat. Protocols 3, 866–876 (2008)
Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997)
Heskes, T.: Energy functions for Self-Organizing Maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)
Bauer, H.-U., Herrmann, M., Villmann, T.: Neural Maps and Topographic Vector Quantization. Neural Networks 12, 659–676 (1999)
Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self–Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8, 256–266 (1997)
Bauer, H.-U., Villmann, T.: Growing a Hypercubical Output Space in a Self–Organizing Feature Map. IEEE Transactions on Neural Networks 8, 218–226 (1997)
Bauer, H.-U., Pawelzik, K.: Quantifying the neighborhood preservation of Self-Organizing Feature Maps. IEEE Transactions on Neural Networks 3, 570–579 (1992)
Ultsch, A., Siemon, H.P.: Kohonen’s self–organizing feature maps for exploratory data analysis. In: Proceedings of ICNN 1990, International Neural Network Conference, pp. 305–308. Kluwer, Dordrecht (1990)
Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab 5. Report A57, April 2000. Helsinki University of Technology, Finland (2000)
Hammer, B., Villmann, T.: Generalized Relevance Learning Vector Quantization. Neural Networks 15, 1059–1068 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schierwagen, A., Villmann, T., Alpár, A., Gärtner, U. (2010). Cluster Analysis of Cortical Pyramidal Neurons Using SOM. In: Schwenker, F., El Gayar, N. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2010. Lecture Notes in Computer Science(), vol 5998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12159-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-12159-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12158-6
Online ISBN: 978-3-642-12159-3
eBook Packages: Computer ScienceComputer Science (R0)