Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rank Distance Aggregation as a Fixed Classifier Combining Rule for Text Categorization

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6008))

Abstract

In this paper we show that Rank Distance Aggregation can improve ensemble classifier precision in the classical text categorization task by presenting a series of experiments done on a 20 class newsgroup corpus, with a single correct class per document. We aggregate four established document classification methods (TF-IDF, Probabilistic Indexing, Naive Bayes and KNN) in different training scenarios, and compare these results to widely used fixed combining rules such as Voting, Min, Max, Sum, Product and Median.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dinu, L.P.: On the classification and aggregation of hierarchies with difererent constitutive elements. Fundamenta Informaticae 55(1), 39–50 (2002)

    MathSciNet  Google Scholar 

  2. Dinu, L.P., Manea, F.: An eficient approach for the rank aggregation problem. Theoretical Computer Science 359(1), 455–461 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dinu, L.P., Popescu, M.: A multi-criteria decision method based on rank distance. Fundamenta Informaticae 86(1-2), 79–91 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Duin, R.P.W., Tax, D.M.J.: Experiments with classifier combining rules. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Duin, R.P.W.: The combining classifier: To train or not to train? Pattern Recognition 2 (2002)

    Google Scholar 

  6. Fukuda, K., Matsui, T.: Finding all minimum cost perfect matchings in bipartite graphs. Networks 22, 461–468 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Manea, F., Ploscaru, C.: A generalization of the assignment problem, and its application to the rank aggregation problem. Fundamenta Informaticae 81(4), 459–471 (2007)

    MATH  MathSciNet  Google Scholar 

  8. McCallum, A.K.: Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering (1996), http://www.cs.cmu.edu/~mccallum/bow

  9. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)

    Article  Google Scholar 

  10. Roli, F., Fumera, G.: Fixed and trained combiners for fusion of imbalanced pattern classifiers. In: Proc. 5th Int. Conf. on Information Fusion, pp. 278–284 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dinu, L.P., Rusu, A. (2010). Rank Distance Aggregation as a Fixed Classifier Combining Rule for Text Categorization. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2010. Lecture Notes in Computer Science, vol 6008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12116-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12116-6_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12115-9

  • Online ISBN: 978-3-642-12116-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics