Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computational Models for Incongruity Detection in Humour

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6008))

  • 2077 Accesses

Abstract

Incongruity resolution is one of the most widely accepted theories of humour, suggesting that humour is due to the mixing of two disparate interpretation frames in one statement. In this paper, we explore several computational models for incongruity resolution. We introduce a new data set, consisting of a series of ‘set-ups’ (preparations for a punch line), each of them followed by four possible coherent continuations out of which only one has a comic effect. Using this data set, we redefine the task as the automatic identification of the humorous punch line among all the plausible endings. We explore several measures of semantic relatedness, along with a number of joke-specific features, and try to understand their appropriateness as computational models for incongruity detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aristotle. Rhetoric. 350 BC

    Google Scholar 

  2. Attardo, S., Raskin, V.: Script theory revis(it)ed: Joke similarity and joke representation model. Humor: International Journal of Humor Research 4(3-4) (1991)

    Google Scholar 

  3. Berry, M.: Large-scale sparse singular value computations. International Journal of Supercomputer Applications 6(1) (1992)

    Google Scholar 

  4. Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures. In: Proceedings of the NAACL Workshop on WordNet and Other Lexical Resources, Pittsburgh (2001)

    Google Scholar 

  5. Buitelaar, P., Magnini, B., Strapparava, C., Vossen, P.: Domain specific sense disambiguation. In: Edmonds, P., Agirre, E. (eds.) Word Sense Disambiguation: Algorithms, Applications, and Trends. Text, Speech and Language Technology, vol. 33, pp. 277–301. Springer, Heidelberg (2006)

    Google Scholar 

  6. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the International Conference on Research in Computational Linguistics, Taiwan (1997)

    Google Scholar 

  7. Landauer, T.K., Foltz, P., Laham, D.: Introduction to latent semantic analysis. Discourse Processes 25 (1998)

    Google Scholar 

  8. Leacock, C., Chodorow, M.: Combining local context and WordNet sense similarity for word sense identification. In: WordNet, An Electronic Lexical Database. The MIT Press, Cambridge (1998)

    Google Scholar 

  9. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In: Proceedings of the SIGDOC Conference 1986, Toronto (June 1986)

    Google Scholar 

  10. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, Madison, WI (1998)

    Google Scholar 

  11. Magnini, B., Strapparava, C., Pezzulo, G., Gliozzo, A.: The role of domain information in word sense disambiguation. Natural Language Engineering 8(4), 359–373 (2002)

    Article  Google Scholar 

  12. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based approaches to text semantic similarity. In: Proceedings of the American Association for Artificial Intelligence, Boston, MA, pp. 775–780 (2006)

    Google Scholar 

  13. Mihalcea, R., Strapparava, C.: Making computers laugh: Investigations in automatic humor recognition. In: Proceedings of the Human Language Technology / Empirical Methods in Natural Language Processing conference, Vancouver (2005)

    Google Scholar 

  14. Mihalcea, R., Strapparava, C.: Learning to laugh (automatically): Computational models for humor recognition. Computational Intelligence 22(2), 126–142 (2006)

    Article  MathSciNet  Google Scholar 

  15. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Proceedings of the Fourth International Conference on Intelligent Text Processing and Computational Linguistics, Mexico City (February 2003)

    Google Scholar 

  16. Raskin, V.: Semantic Mechanisms of Humor. Kluwer Academic Publications, Dordrecht (1985)

    Google Scholar 

  17. Resnik, P.: Using information content to evaluate semantic similarity. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada (1995)

    Google Scholar 

  18. Ritchie, G.: Developing the incongruity-resolution theory. In: Proceedings of the AISB Symposium on Creative Language: Stories and Humour (1999)

    Google Scholar 

  19. Salton, G., Lesk, M.: Computer evaluation of indexing and text processing, pp. 143–180. Prentice Hall, Inc., Englewood Cliffs (1971)

    Google Scholar 

  20. Schopenhauer, A.: The World as Will and Idea. Kessinger Publishing Company (1819)

    Google Scholar 

  21. Stock, O., Strapparava, C.: Getting serious about the development of computational humor. In: Proceedings of the International Conference on Artificial Intelligence, IJCAI 2003 (2003)

    Google Scholar 

  22. Turney, P.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 491. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, Las Cruces, New Mexico (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mihalcea, R., Strapparava, C., Pulman, S. (2010). Computational Models for Incongruity Detection in Humour. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2010. Lecture Notes in Computer Science, vol 6008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12116-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12116-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12115-9

  • Online ISBN: 978-3-642-12116-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics