Abstract
Social networking websites have facilitated a new style of communication through blogs, instant messaging, and various other techniques. Through collaboration, millions of users participate in millions of discussions every day. However, it is still difficult to determine the extent to which such discussions affect the emotions of the participants. We surmise that emotionally-oriented discussions may affect a given user’s general emotional bent and be reflected in other discussions he or she may initiate or participate in. It is in this way that emotion (or sentiment) may propagate through a network. In this paper, we analyze sentiment propagation in social networks, review the importance and challenges of such a study, and provide methodologies for measuring this kind of propagation. A case study has been conducted on a large dataset gathered from the LiveJournal social network. Experimental results are promising in revealing some aspects of the sentiment propagation taking place in social networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the influential bloggers in a community. In: WSDM 2008: Proceedings of the international conference on Web search and web data mining, pp. 207–218. ACM, New York (2008)
Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, p. 42. ACM, New York (2007)
Cilibrasi, R., Vitanyi, P., Cwi, A.: The Google Similarity Distance. IEEE Transactions on Knowledge and Data Engineering 19(3), 370–383 (2007)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, p. 354, Association for Computational Linguistics (2005)
Turney, P., et al.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 417–424 (2002)
Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines. In: Advances in Kernel Methods-Support Vector Learning, vol. 208 (1999)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL 2002 conference on Empirical methods in natural language processing, vol. 10, pp. 79–86. Association for Computational Linguistics, Morristown (2002)
Wiebe, J., Riloff, E.: Creating subjective and objective sentence classifiers from unannotated texts. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 486–497. Springer, Heidelberg (2005)
Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2003), pp. 105–112 (2003)
Esuli, A., Sebastiani, F.: SentiWordNet: A publicly available lexical resource for opinion mining. In: Proceedings of LREC, Citeseer, vol. 6 (2006)
Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83(6), 1420–1443 (1978)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 137–146. ACM, New York (2003)
Fowler, J., Christakis, N.: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. British Medical Journal 337(dec04 2), a2338 (2008)
Wu, F., Huberman, B., Adamic, L., Tyler, J.: Information flow in social groups. Physica A: Statistical Mechanics and its Applications 337(1-2), 327–335 (2004)
Huberman, B., Romero, D., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday 14(1) (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zafarani, R., Cole, W.D., Liu, H. (2010). Sentiment Propagation in Social Networks: A Case Study in LiveJournal. In: Chai, SK., Salerno, J.J., Mabry, P.L. (eds) Advances in Social Computing. SBP 2010. Lecture Notes in Computer Science, vol 6007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12079-4_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-12079-4_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12078-7
Online ISBN: 978-3-642-12079-4
eBook Packages: Computer ScienceComputer Science (R0)