Abstract
Low power and small footprint IEEE 802.15.4/ZigBee based devices are a promising alternative to 802.11a/b/g and proprietary protocols for non-critical patient monitoring under important scenarios such as post-op and emergency rooms. However, their use in a healthcare facility to monitor several mobile patients poses several difficulties, mainly because these protocols were primarily designed to operate in low traffic load scenarios. This work presents simulation results used to evaluate the performance of an IEEE 802.15.4/ ZigBee based wireless sensors network (WSN) in a vital signs monitoring scenario, for both star and tree based network topologies. The scalability problem in non-beacon enabled networks is addressed to quantify the degradation in quality of service (QoS) markers when the number of sensor nodes increase. Additionally, the impact of hidden nodes is assessed for the star topology. Results indicate that, to achieve a delivery ratio (DR) higher than 99%, the number of electrocardiogram (ECG) nodes in a star network must not exceed 35. However, considering a tree topology, the maximum number of nodes must be reduced to 18 to maintain the same DR. The network performance is severely impacted by hidden nodes. For instance, in the absence of hidden nodes, a star network consisting of 32 ECG nodes presents a DR higher than 99%; however, if the percentage of hidden nodes is increased to 5%, it drops to 94%. If the same percentage of hidden nodes is maintained, it is necessary to reduce the number of nodes to 13 to reestablish a 99% DR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ilyas, M., Mahgoub, I. (eds.): Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems. CRC Press, New York (2004)
Fernández-López, H., Afonso, J.A., Correia, J.H., Simões, R.: Extended Health Visibility in the Hospital Environment. In: BioDevices 2009, pp. 422–425 (2009)
Gao, T., Pesto, C., Selavo, L., Chen, Y., Ko, G., Lim, H., Terzis, A., Watt, A., Jeng, J., Chen, B., Lorincz, K., Welsh, M.: Wireless Medical Sensor Networks in Emergency Response: Implementation and Pilot Results. In: IEEE Conf. on Tech. for Homeland Security (2008)
Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J.H., Welsh, M., Bonato, P.: Analysis of Feature Space for Monitoring Persons with Parkinson’s Disease With Application to a Wireless Wearable Sensor System. In: 29th Annual International Conference of the Engineering in Medicine and Biology Society (2007)
Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., Moulton, S.: Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Computing 3(4), 16–23 (2004)
Latre, B., Mil, P.D., Moerman, I., Dhoedt, B., Demeester, P., Dierdonck, N.V.: Throughput and Delay Analysis of Unslotted IEEE 802.15.4. J. Networks 1(1), 20–28 (2006)
Liang, X., Balasingham, I.: Performance Analysis of the IEEE 802.15.4 based ECG Monitoring Network. In: 7th IASTED, pp. 100–104 (2007)
Golmie, N., Cypher, D., Rebala, O.: Performance Analysis of Low Rate Wireless Technologies for Medical Applications. Computer Comm. (28), 1266–1275 (2005)
Severino, R.: On the use of the IEEE 802.15.4/ZigBee for Time-Sensitive Wireless Sensor Network Applications. Polytechnic Institute of Porto, MSc Thesis (2008)
Lain-Jinn, H., Lain-Jinn, H., Shiann-Tsong, S., Yun-Yen, S., Yen-Chieh, C.: Grouping strategy for solving hidden node problem in IEEE 802.15.4 LR-WPAN. In: First International Conference on Wireless Internet, pp. 26–32 (2005)
Ruzzelli, A.G., Tynan, R., O’Hare, G.M.P.: An energy-efficient and low-latency routing protocol for wireless sensor networks. Systems Communications, 449–454 (2005)
IEEE Std 802.15.4-2003—Part 15.4: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (2003)
ZigBee Alliance, ZigBee Specification 053474r17, v. 1.0 r17 (2007)
OMNet++ Discrete Event Simulation System, http://www.omnet.org
Jennic Wireless Microcontrollers, http://www.jennic.com/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Fernández-López, H., Macedo, P., Afonso, J.A., Correia, J.H., Simões, R. (2010). Evaluation of the Impact of the Topology and Hidden Nodes in the Performance of a ZigBee Network. In: Hailes, S., Sicari, S., Roussos, G. (eds) Sensor Systems and Software. S-CUBE 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11528-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-11528-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11527-1
Online ISBN: 978-3-642-11528-8
eBook Packages: Computer ScienceComputer Science (R0)