Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sensor Data Fusion for Activity Monitoring in Ambient Assisted Living Environments

  • Conference paper
Sensor Systems and Software (S-CUBE 2009)

Abstract

We illustrate the PERSONA context-awareness framework applied to a major problem in Ambient Intelligence, namely user activity monitoring, that requires to infer new knowledge from collected and fused sensor data, dealing with highly dynamic environments where devices continuously change their availability and (or) physical location. We describe the Sensor Abstraction and Integration Layer (SAIL), we introduce the Human Posture Classification component, which is one particular context information provider, and finally we describe the Activity Monitor, which is a reasoner that delivers aggregated/derived context events in terms of the context ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. OSGi web site, http://www.osgi.org

  2. PERSONA project web site, http://www.aal-persona.org

  3. Weka 3: Data mining software in java, http://www.cs.waikato.ac.nz/ml/weka/

  4. AMIGO project. Ambient intelligence for the networked home environment (September 2004), http://www.amigo-project.org

  5. Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigbee standards. Computer Communications 30(7), 1655–1695 (2007)

    Article  Google Scholar 

  6. Bouckaert, R.: Bayesian network classifiers in weka for version 3-5-8 (July 2008)

    Google Scholar 

  7. Ramos, D.S.C., Augusto, J.C.: Ambient intelligence - the next step for artificial intelligence. IEEE Intelligent Systems 23(2) (March/April 2008)

    Google Scholar 

  8. Cozman, F.G.: The interchange format for bayesian networks, http://www.cs.cmu.edu/~fgcozman/research/interchangeformat/

  9. Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Probabilistic posture classification for human-behavior analysis. IEEE Transactions on Systems, Man and Cybernetics, Part A 35(1), 42–54 (2005)

    Article  Google Scholar 

  10. Cucchiara, R., Prati, A., Vezzani, R.: Posture classification in a multi-camera indoor environment. In: ICIP (1), pp. 725–728 (2005)

    Google Scholar 

  11. Fides-Valero, Á., Freddi, M., Furfari, F., Tazari, M.-R.: The PERSONA framework for supporting context-awareness in open distributed systems. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J., Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 91–108. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Girolami, M., Lenzi, S., Furfari, F., Chessa, S.: SAIL: a Sensor Abstraction and Integration Layer for Context Aware Architectures. In: Proceedings of the 34th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2008), Parma, Italy, pp. 374–381. IEEE, Los Alamitos (2008)

    Chapter  Google Scholar 

  13. I. A. Group. Scenarios for ambient intelligence in 2010, european commission (2001)

    Google Scholar 

  14. Gu, T., Pung, H.K., Zhang, D.Q.: A middleware for building context-aware mobile services. In: IEEE Vehicular Technology Conference, pp. 2656–2660 (2004)

    Google Scholar 

  15. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2003)

    Google Scholar 

  16. Heckerman, D.: A tutorial on learning with bayesian networks. In: m. i. (ed.) Learning in graphical models. Kluwer, Dordrecht (1998)

    Google Scholar 

  17. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: A programmable pervasive space. IEEE Computer 1(3), 64–74 (2005)

    Google Scholar 

  18. Kotsiantis, S.: Supervised machine learning: A review of classification techniques. Informatica Journal 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Madden, M.: The performance of bayesian network classifiers constructed using different techniques. In: Proc. of european conference on machine learning, workshop on probabilistic graphical models for classification (September 2003)

    Google Scholar 

  20. MESA Imaging (February 2009), http://www.mesa-imaging.ch/

  21. Moeslund, T.B., Hilton, A., Krueger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)

    Article  Google Scholar 

  22. Molla, S., Ahamed, M.M.: A survey of middleware for sensor network and challenges. In: Proceedings of nternational Conference on Parallel Processing Workshop (ICPP 2006) (August 2006)

    Google Scholar 

  23. Pellegrini, S., Iocchi, L.: Human posture tracking and classification through stereo vision and 3d model matching. J. Image Video Process. 8(2), 1–12 (2008)

    Article  Google Scholar 

  24. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)

    Google Scholar 

  25. Poppe, R.: Vision-based human motion analysis: An overview. Comput. Vis. Image Underst. 108(1-2), 4–18 (2007)

    Article  Google Scholar 

  26. Porikli, F., Tuzel, O.: Bayesian background modeling for foreground detection. In: VSSN 2005: Proceedings of the third ACM international workshop on Video surveillance & sensor networks, pp. 55–58. ACM, New York (2005)

    Chapter  Google Scholar 

  27. Wang, H., Chen, S., Hu, Z., Zheng, W.: Locality-preserved maximum information projection. IEEE Transactions on Neural Networks 19(4), 571–585 (2008)

    Article  Google Scholar 

  28. Wang, L., Suter, D.: Analyzing human movements from silhouettes using manifold learning. In: IEEE Conference on Advanced Video and Signal Based Surveillance, vol. 7 (2006)

    Google Scholar 

  29. Wang, L., Suter, D.: Learning and matching of dynamic shape manifolds for human action recognition. IEEE Transactions on Image Processing 16(6), 1646–1661 (2007)

    Article  MathSciNet  Google Scholar 

  30. Wientapper, F., Ahrens, K., Wuest, H., Bockholt, U.: Linear-projection-based classification of human postures in time-of-flight data. IEEE Transactions on Systems, Man and Cybernetics (October 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Amoretti, M., Wientapper, F., Furfari, F., Lenzi, S., Chessa, S. (2010). Sensor Data Fusion for Activity Monitoring in Ambient Assisted Living Environments. In: Hailes, S., Sicari, S., Roussos, G. (eds) Sensor Systems and Software. S-CUBE 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11528-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11528-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11527-1

  • Online ISBN: 978-3-642-11528-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics