Abstract
We illustrate the PERSONA context-awareness framework applied to a major problem in Ambient Intelligence, namely user activity monitoring, that requires to infer new knowledge from collected and fused sensor data, dealing with highly dynamic environments where devices continuously change their availability and (or) physical location. We describe the Sensor Abstraction and Integration Layer (SAIL), we introduce the Human Posture Classification component, which is one particular context information provider, and finally we describe the Activity Monitor, which is a reasoner that delivers aggregated/derived context events in terms of the context ontology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
OSGi web site, http://www.osgi.org
PERSONA project web site, http://www.aal-persona.org
Weka 3: Data mining software in java, http://www.cs.waikato.ac.nz/ml/weka/
AMIGO project. Ambient intelligence for the networked home environment (September 2004), http://www.amigo-project.org
Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigbee standards. Computer Communications 30(7), 1655–1695 (2007)
Bouckaert, R.: Bayesian network classifiers in weka for version 3-5-8 (July 2008)
Ramos, D.S.C., Augusto, J.C.: Ambient intelligence - the next step for artificial intelligence. IEEE Intelligent Systems 23(2) (March/April 2008)
Cozman, F.G.: The interchange format for bayesian networks, http://www.cs.cmu.edu/~fgcozman/research/interchangeformat/
Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Probabilistic posture classification for human-behavior analysis. IEEE Transactions on Systems, Man and Cybernetics, Part A 35(1), 42–54 (2005)
Cucchiara, R., Prati, A., Vezzani, R.: Posture classification in a multi-camera indoor environment. In: ICIP (1), pp. 725–728 (2005)
Fides-Valero, Á., Freddi, M., Furfari, F., Tazari, M.-R.: The PERSONA framework for supporting context-awareness in open distributed systems. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J., Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 91–108. Springer, Heidelberg (2008)
Girolami, M., Lenzi, S., Furfari, F., Chessa, S.: SAIL: a Sensor Abstraction and Integration Layer for Context Aware Architectures. In: Proceedings of the 34th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2008), Parma, Italy, pp. 374–381. IEEE, Los Alamitos (2008)
I. A. Group. Scenarios for ambient intelligence in 2010, european commission (2001)
Gu, T., Pung, H.K., Zhang, D.Q.: A middleware for building context-aware mobile services. In: IEEE Vehicular Technology Conference, pp. 2656–2660 (2004)
He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2003)
Heckerman, D.: A tutorial on learning with bayesian networks. In: m. i. (ed.) Learning in graphical models. Kluwer, Dordrecht (1998)
Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: A programmable pervasive space. IEEE Computer 1(3), 64–74 (2005)
Kotsiantis, S.: Supervised machine learning: A review of classification techniques. Informatica Journal 31, 249–268 (2007)
Madden, M.: The performance of bayesian network classifiers constructed using different techniques. In: Proc. of european conference on machine learning, workshop on probabilistic graphical models for classification (September 2003)
MESA Imaging (February 2009), http://www.mesa-imaging.ch/
Moeslund, T.B., Hilton, A., Krueger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)
Molla, S., Ahamed, M.M.: A survey of middleware for sensor network and challenges. In: Proceedings of nternational Conference on Parallel Processing Workshop (ICPP 2006) (August 2006)
Pellegrini, S., Iocchi, L.: Human posture tracking and classification through stereo vision and 3d model matching. J. Image Video Process. 8(2), 1–12 (2008)
Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3099–3104 (2004)
Poppe, R.: Vision-based human motion analysis: An overview. Comput. Vis. Image Underst. 108(1-2), 4–18 (2007)
Porikli, F., Tuzel, O.: Bayesian background modeling for foreground detection. In: VSSN 2005: Proceedings of the third ACM international workshop on Video surveillance & sensor networks, pp. 55–58. ACM, New York (2005)
Wang, H., Chen, S., Hu, Z., Zheng, W.: Locality-preserved maximum information projection. IEEE Transactions on Neural Networks 19(4), 571–585 (2008)
Wang, L., Suter, D.: Analyzing human movements from silhouettes using manifold learning. In: IEEE Conference on Advanced Video and Signal Based Surveillance, vol. 7 (2006)
Wang, L., Suter, D.: Learning and matching of dynamic shape manifolds for human action recognition. IEEE Transactions on Image Processing 16(6), 1646–1661 (2007)
Wientapper, F., Ahrens, K., Wuest, H., Bockholt, U.: Linear-projection-based classification of human postures in time-of-flight data. IEEE Transactions on Systems, Man and Cybernetics (October 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Amoretti, M., Wientapper, F., Furfari, F., Lenzi, S., Chessa, S. (2010). Sensor Data Fusion for Activity Monitoring in Ambient Assisted Living Environments. In: Hailes, S., Sicari, S., Roussos, G. (eds) Sensor Systems and Software. S-CUBE 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11528-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-11528-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11527-1
Online ISBN: 978-3-642-11528-8
eBook Packages: Computer ScienceComputer Science (R0)