Abstract
Reconstruction of signal transduction network models based on incomplete information about network structure and dynamical behaviour is a major challenge in current systems biology. In particular, interactions within signalling networks are frequently characterised by partially unknown protein phosphorylation and dephosphorylation cascades at a submolecular description level. For prediction of promising network candidates, reverse engineering techniques typically enumerate the reaction search space. Considering an underlying amount of phosphorylation sites, this implies a potentially exponential number of individual reactions in conjunction with corresponding protein activation states. To manage the computational complexity, we extend P systems with string-objects by a subclass for protein representation able to process wild-carded together with specific information about protein binding domains and their ligands. This variety of reactants works together with assigned term-rewriting mechanisms derived from discretised reaction kinetics. We exemplify the descriptional capability and flexibility of the framework by discussing model candidates for the circadian clock formed by the KaiABC oscillator found in the cyanobacterium Synechococcus elongatus. A simulation study of its dynamical behaviour demonstrates effects of superpositioned protein abundance courses based on regular expressions corresponding to dedicated protein activation states.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall, Boca Raton (2006)
Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)
Arkin, A.P.: Synthetic cell biology. Current Opinion in Biotechnology 12(6), 638–644 (2001)
Axmann, I.M., Legewie, S., Herzel, H.: A minimal circadian clock model. Genome Inform. 18, 54–64 (2007)
Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70, 85–93 (2003)
Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: Software for Rule-Based Modeling of Signal Transduction Based on the Interactions of Molecular Domains. Bioinformatics 20, 3289–3292 (2004)
Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)
Clodong, S., Dühring, U., Kronk, L., Wilde, A., Axmann, I.M., Herzel, H., Kollmann, M.: Functioning and robustness of a bacterial circadian clock. Molecular Systems Biology 90(3), 1–9 (2007)
Connors, K.A.: Chemical Kinetics. VCH Publishers, Weinheim (1990)
Eils, R., Kriebe, A. (eds.): Computational Systems Biology. Academic Press, London (2005)
Golden, S.S., Cassone, V.M., LiWang, A.: Shifting nanoscopic clock gears. Nature Structural and Molecular Biology 14, 362–363 (2007)
Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Springer, Heidelberg (2006)
Hinze, T., Lenser, T., Dittrich, P.: A protein substructure based P system for description and analysis of cell signalling networks. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423. Springer, Heidelberg (2006)
Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register machine computations on binary numbers by oscillating and catalytic chemical reactions modelled using mass-action kinetics. International Journal of Foundations of Computer Science 20(3), 411–426 (2009)
Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation, and Application. Wiley-VCH, Chichester (2006)
Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P.: Towards evolutionary network reconstruction tools for systems biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 132–142. Springer, Heidelberg (2007)
Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)
Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)
Miyoshi, F., Nakayama, Y., Kaizu, K., Iwasaki, H., Tomita, M.: A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. Journal of Biological Rhythms 22(1), 69–80 (2007)
Mori, T., Williams, D.R., Byrne, M.O., Qin, X., Egli, M., Mchaourab, H.S., Stewart, P.L., Johnson, C.H.: Elucidating the ticking of an in vitro circadian clockwork. PLoS Biology 5(4), 841–853 (2007)
Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y.: Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005)
Paranjpe, D.A., Sharma, V.K.: Evolution of temporal order in living organisms. Journal of Circadian Rhythms 3, 7 (2005)
Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)
Rosato, E.: Circadian Rhythms: Methods and Protocols. Springer, Heidelberg (2007)
Roussel, M.R., Gonze, D., Goldbeter, A.: Modeling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods. J. Theor. Biol. 205(2), 321–340 (2000)
Schuster, S., Zevedei-Oancea, I.: A theoretical framework for detecting signal transfer routes in signalling networks. Comput. Chem. Eng. 29, 597–617 (2005)
Tomita, J., Nakajima, M., Kondo, T., Iwasaki, H.: No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005)
Xu, Y., Mori, T., Johnson, C.H.: Circadian clock-protein expression in cyanobacteria: rhythms and phase-setting. EMBO Journal 19, 3349–3357 (2007)
Yoda, M., Eguchi, K., Terada, T.P., Sasai, M.: Monomer-shuffling and allosteric transition in KaiC circadian oscillation. PLoS ONE 5, 1–7 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hinze, T., Lenser, T., Escuela, G., Heiland, I., Schuster, S. (2010). Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2009. Lecture Notes in Computer Science, vol 5957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11467-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-11467-0_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11466-3
Online ISBN: 978-3-642-11467-0
eBook Packages: Computer ScienceComputer Science (R0)