Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Reversibility and Determinism in P Systems

  • Conference paper
Membrane Computing (WMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5957))

Included in the following conference series:

Abstract

Membrane computing is a formal framework of distributed parallel computing. In this paper we study the reversibility and maximal parallelism of P systems from the computability point of view. The notions of reversible and strongly reversible systems are considered. The universality is shown for reversible P systems with either priorities or inhibitors, and a negative conjecture is stated for reversible P systems without such control. Strongly reversible P systems without control have shown to only generate sub-finite sets of numbers; this limitation does not hold if inhibitors are used.

Another concept considered is strong determinism, which is a syntactic property, as opposed to the determinism typically considered in membrane computing. Strongly deterministic P systems without control only accept sub-regular sets of numbers, while systems with promoters and inhibitors are universal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrigoroaiei, O., Ciobanu, G.: Dual P Systems. In: Corne, D.W., Frisco, P., Paun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 95–107. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  3. Calude, C., Păun, Gh.: Bio-steps beyond Turing. BioSystems 77, 175–194 (2004)

    Article  Google Scholar 

  4. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ibarra, O.H.: On strong reversibility in P systems and related problems (manuscript)

    Google Scholar 

  6. Leporati, A., Zandron, C., Mauri, G.: Reversible P systems to simulate Fredkin circuits. Fundam. Inform. 74(4), 529–548 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  8. Morita, K.: Universality of a reversible two-counter machine. Theoret. Comput. Sci. 168, 303–320 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Morita, K.: A simple reversible logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Morita, K.: Simple universal one-dimensional reversible cellular automata. J. Cellular Automata 2, 159–165 (2007)

    MATH  Google Scholar 

  11. Morita, K., Nishihara, N., Yamamoto, Y., Zhang, Zh.: A hierarchy of uniquely parsable grammar classes and deterministic acceptors. Acta Inf. 34(5), 389–410 (1997)

    Google Scholar 

  12. Morita, K., Yamaguchi, Y.: A universal reversible Turing machine. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  14. P systems webpage, http://ppage.psystems.eu/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alhazov, A., Morita, K. (2010). On Reversibility and Determinism in P Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2009. Lecture Notes in Computer Science, vol 5957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11467-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11467-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11466-3

  • Online ISBN: 978-3-642-11467-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics