Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computation of Non-dominated Points Using Compact Voronoi Diagrams

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5942))

Included in the following conference series:

Abstract

We discuss in this paper a method of finding skyline or non-dominated points in a set P of n points with respect to a set S of m sites. A point p i  ∈ P is non-dominated if and only if for each p j  ∈ P, \(j \not= i\), there exists at least one point s ∈ S that is closer to p i than p j . We reduce this problem of determining non-dominated points to the problem of finding sites that have non-empty cells in an additively weighted Voronoi diagram under convex distance function. The weights of the said Voronoi diagram are derived from the co-ordinates of the points of P and the convex distance function is derived from S. In the 2-dimensional plane, this reduction gives a O((m + n)logm + n logn)-time randomized incremental algorithm to find the non-dominated points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, Washington, DC, USA, pp. 421–430. IEEE Computer Society, Los Alamitos (2001)

    Chapter  Google Scholar 

  2. Brown, K.Q.: Geometric transforms for fast geometric algorithms. Ph.D. thesis, Dept. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Report CMU-CS-80-101 (1980)

    Google Scholar 

  3. Cassels, J.: An Introduction to the Geometry of Numbers. Springer, Heidelberg (1959)

    MATH  Google Scholar 

  4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of the 17th International Conference on Data Engineering, Washington, DC, USA, pp. 717–816. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  5. Kirkpatrick, D., Snoeyink, J.: Tentative prune-and-search for computing fixed-points with applications to geometric computation. Fundam. Inform. 22, 353–370 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  7. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: Proceedings of VLDB, pp. 275–286 (2002)

    Google Scholar 

  8. McAllister, M., Kirkpatrick, D., Snoeyink, J.: A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discrete Comput. Geom. 15, 73–105 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Transaction on Database System 30(1), 41–82 (2005)

    Article  Google Scholar 

  10. Sack, J.-R., Urrutia, J.: Handbook of computational geometry. North-Holland Publishing Co., Amsterdam (2000)

    MATH  Google Scholar 

  11. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proceedings of the 32nd international conference on Very large data bases, pp. 751–762. VLDB Endowment (2006)

    Google Scholar 

  12. Son, W., Lee, M.-W., Ahn, H.-K., Hwang, S.w.: Spatial skyline queries: An efficient geometric algorithm. CoRR, abs/0903.3072 (2009)

    Google Scholar 

  13. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB 2001: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 301–310. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharya, B., Bishnu, A., Cheong, O., Das, S., Karmakar, A., Snoeyink, J. (2010). Computation of Non-dominated Points Using Compact Voronoi Diagrams. In: Rahman, M.S., Fujita, S. (eds) WALCOM: Algorithms and Computation. WALCOM 2010. Lecture Notes in Computer Science, vol 5942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11440-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11440-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11439-7

  • Online ISBN: 978-3-642-11440-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics