Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

  • 694 Accesses

Abstract

A parameterized problem Π can be considered as a set of pairs (I,k) where I is the main part and k (usually an integer) is the parameter. Π is called fixed-parameter tractable (FPT) if membership of (I,k) in Π can be decided in time O(f(k)|I|c), where |I| denotes the size of I, f(k) is a computable function, and c is a constant independent of k and I. An algorithm of complexity O(f(k)|I|c) is called a fixed-parameter algorithm.

It often happens that although a problem is FPT, the practitioners prefer to use imprecise heuristic methods to solve the problem in the real-world situation simply because of the fact that the heuristic methods are faster. In this paper we argue that in this situation a fixed-parameter algorithm for the given problem may be still of a considerable practical use. In particular, the fixed-parameter algorithm can be used to evaluate the approximation quality of heuristic approaches.

To demonstrate this way of application of fixed-parameter algorithms, we consider the problem of extracting a maximum-size reflected network in a linear program. We evaluate a state-of-the-art heuristic SGA and two variations of it with a new heuristic and with an exact algorithm. The new heuristic and algorithm use fixed-parameter tractable procedures. The new heuristic turned out to be of little practical interest, but the exact algorithm is of interest when the network size is close to that of the linear program especially if the exact algorithm is used in conjunction with SGA. Another conclusion which has a large practical interest is that some variant of SGA can be the best choice because in most cases it returns optimal solutions; previously it was disregarded because comparing to the other heuristics it improved the solution insignificantly at the cost of much larger running times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Fellows, M.R., Langston, M., Suters, W.H.: Crown Structures for Vertex Cover Kernelization. Theory of Computing Systems 41, 411–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abu-Khzam, F.N., Langston, M., Shanbhag, P., Symons, C.T.: Scalable Parallel Algorithms for FPT Problems. Algorithmica 45, 269–284 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker, B.M., Maye, P.J.: A Heuristic for Finding Embedded Network Structure in Mathematical Programmes. Europ. Jour. Oper. Res. 67, 52–63 (1993)

    Article  MATH  Google Scholar 

  4. Bartholdi, J.J.: A Good Submatrix is Hard to Find. Oper. Res. Letters 1, 190–193 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Betzler, N., Hüffner, F., Niedermeier, R.: Optimal edge deletions for signed graph balancing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310. Springer, Heidelberg (2007)

    Google Scholar 

  6. Bixby, R.E., Fourer, R.: Finding Embedded Network Rows in Linear Programs I. Extraction Heuristics. Manag. Science 34, 342–376 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bixby, R.E., Cunningham, W.H.: Converting Linear Programs to Network Problems. Math. Oper. Res. 5, 321–356 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brown, G.G., Wright, W.G.: Automatic Identification of Embedded Network Rows in Large-Scale Optimization Models. Math. Prog. 29, 41–56 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover. Tech. Report TR05-008, DePaul University, Chicago IL (2005)

    Google Scholar 

  10. DasGupta, B., Enciso, G.A., Sontag, E.D., Zhang, Y.: Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 253–264. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  13. Gülpınar, N., Gutin, G., Mitra, G., Maros, I.: Detecting Embedded Pure Network Structures by Using GUB and Independent Set Algorithms. Comput. Optim. Applic. 15, 235–247 (2000)

    Article  MATH  Google Scholar 

  14. Gülpınar, N., Gutin, G., Mitra, G., Zverovitch, A.: Extracting Pure Network Submatrices in Linear Programs Using Signed Graphs. Discrete Applied Mathematics 137, 359–372 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gutin, G., Zverovitch, A.: Extracting pure network submatrices in linear programs using signed graphs, Part 2. Communications of DQM 6, 58–65 (2003)

    Google Scholar 

  16. Hansen, P.: Labelling Algorithms for Balance in Signed Graphs. In: Problémes Combinatoires et Theorie des Graphes, Colloq. Internat., Orsay, pp. 215–217 (1976); Colloques Internat. du CNRS 260 Paris (1978)

    Google Scholar 

  17. Harary, F., Kabell, J.A.: A Simple Algorithm to Detect Balance in Signed Graphs. Math. Social Science 1, 131–136 (1980-1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Heller, I., Tompkins, C.B.: An Extension of a Theorem of Dantzig’s. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems. Annals Math. Studies, vol. 38, pp. 247–252. Princeton Univ. Press, Princeton (1956)

    Google Scholar 

  19. Hsu, A.C., Fourer, R.: Identification of Embedded Network Structure in Linear Programming Models. GSIA Working Paper, 1997-58

    Google Scholar 

  20. Hüffner, F.: Algorithm Engineering for Optimal Graph Bipartization. Journal of Graph Algorithms and Applications 13, 77–98 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Kottler, S., Kaufmann, M., Sinz, C.: Computation of Renameable Horn Backdoors. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 154–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  23. Paschos, V.T.: A Δ/2-Approximation for the Maximum Independent Set Problem. Inform. Proc. Let. 44, 11–13 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. Journal of Computer and System Sciences (in press)

    Google Scholar 

  25. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32, 299–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zaslavsky, T.: Signed Graphs. Discete Applied Math. 4, 47–74 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutin, G., Karapetyan, D., Razgon, I. (2009). Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics