Nothing Special   »   [go: up one dir, main page]

Skip to main content

Balanced Hashing, Color Coding and Approximate Counting

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

  • 768 Accesses

Abstract

Color Coding is an algorithmic technique for deciding efficiently if a given input graph contains a path of a given length (or another small subgraph of constant tree-width). Applications of the method in computational biology motivate the study of similar algorithms for counting the number of copies of a given subgraph. While it is unlikely that exact counting of this type can be performed efficiently, as the problem is #W[1]-complete even for paths, approximate counting is possible, and leads to the investigation of an intriguing variant of families of perfect hash functions. A family of functions from [n] to [k] is an (ε,k)-balanced family of hash functions, if there exists a positive T so that for every K ⊂ [n] of size |K| = k, the number of functions in the family that are one-to-one on K is between (1 − ε)T and (1 + ε)T. The family is perfectly k-balanced if it is (0,k)-balanced.

We show that every such perfectly k-balanced family is of size at least \(c(k) n^{\lfloor k/2 \rfloor}\), and that for every \(\epsilon>\frac{1}{poly(k)}\) there are explicit constructions of (ε,k)-balanced families of hash functions from [n] to [k] of size e (1 + o(1))k logn. This is tight up to the o(1)-term in the exponent, and supplies deterministic polynomial time algorithms for approximately counting the number of paths or cycles of a specified length k (or copies of any graph H with k vertices and bounded tree-width) in a given input graph of size n, up to relative error ε, for all k ≤ O(logn).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms 7(4), 567–583 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif counting and discovery by color coding. In: ISMB (Supplement of Bioinformatics), pp. 241–249 (2008)

    Google Scholar 

  3. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992)

    Article  MATH  Google Scholar 

  4. Alon, N., Gutner, S.: Balanced families of perfect hash functions and their applications. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 435–446. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5(2), 271–285 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alon, N., Schwartz, O., Shapira, A.: An elementary construction of constant-degree expanders. Combin. Probab. Comput. 17(3), 319–327 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alon, N., Spencer, J.H.: The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken (2008)

    MATH  Google Scholar 

  8. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Arvind, V., Raman, V.: Approximation algorithms for some parameterized counting problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 453–464. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings in halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Feller, W.: An introduction to probability theory and its applications, 3rd edn., vol. I. Wiley, New York (1968)

    MATH  Google Scholar 

  13. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing 33(4), 892–922 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case access time. Journal of the ACM 31(3), 538–544 (1984)

    Article  MATH  Google Scholar 

  15. Hall Jr., M.: Combinatorial theory, 2nd edn. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons Inc., A Wiley-Interscience Publication, New York (1986)

    MATH  Google Scholar 

  16. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc (N.S.) 43(4), 439–561 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding to facilitate signaling pathway detection. In: Sankoff, D., Wang, L., Chin, F. (eds.) APBC. Advances in Bioinformatics and Computational Biology, vol. 5, pp. 277–286. Imperial College Press (2007)

    Google Scholar 

  18. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jukna, S.: Extremal combinatorics. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2001); With applications in computer science

    MATH  Google Scholar 

  21. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: 36th Annual Symposium on Foundations of Computer Science, pp. 182–191 (1995)

    Google Scholar 

  22. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM Journal on Computing 19(5), 775–786 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13(2), 133–144 (2006)

    Article  MathSciNet  Google Scholar 

  24. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24(4), 427–433 (2006)

    Article  Google Scholar 

  25. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199 (2006)

    Article  Google Scholar 

  26. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 455–464. ACM, New York (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alon, N., Gutner, S. (2009). Balanced Hashing, Color Coding and Approximate Counting. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics