Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling Common Real-Word Relations Using Triples Extracted from n-Grams

  • Conference paper
The Semantic Web (ASWC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5926))

Included in the following conference series:

Abstract

In this paper, we present an approach providing generalized relations for automatic ontology building based on frequent word n-grams. Using publicly available Google n-grams as our data source we can extract relations in form of triples and compute generalized and more abstract models. We propose an algorithm for building abstractions of the extracted triples using WordNet as background knowledge. We also present a novel approach to triple extraction using heuristics, which achieves notably better results than deep parsing applied on n-grams. This allows us to represent information gathered from the web as a set of triples modeling the common and frequent relations expressed in natural language. Our results have potential for usage in different settings including providing for a knowledge base for reasoning or simply as statistical data useful in improving understanding of natural languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clark, P., Harrison, P.: Large-Scale Extraction and Use of Knowledge from Text. In: Proc. Fifth Int. Conf. on Knowledge Capture, KCap 2009 (2009)

    Google Scholar 

  2. Rusu, D., Dali, L., Fortuna, B., Grobelnik, M., Mladenić, D.: Triplet Extraction from Sentences. In: Proceedings of the 10th International Multiconference Information Society - IS 2007, pp. 218–222 (2007)

    Google Scholar 

  3. Specia, L., Baldassarre, C., Motta, E.: Relation Extraction for Semantic Intranet Annotations. Knowledge Media Institute (2006)

    Google Scholar 

  4. Sahay, S., Li, B., Garcia, E.V., Agichtein, E., Ram, A.: Domain Ontology Construction from Biomedical Text, pp. 28–34. CSREA Press (2007)

    Google Scholar 

  5. Fundel, K., Küffner, R., Zimmer, R.: RelEx - Relation extraction using dependency parse trees. Bioinformatics 23, 365–371 (2007)

    Article  Google Scholar 

  6. Etzioni, M., Cafarella, D., Downey, S., Kok, A.-M., Popescu, T., Shaked, S., Soderland, D.S.: Web-scale information extraction in knowitall (preliminary results), pp. 100–110. ACM, New York (2004)

    Google Scholar 

  7. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open Information Extraction from the Web, pp. 2670–2676 (2007)

    Google Scholar 

  8. Zelenko, D., Aone, C., Richardella, A.: Kernel Methods for Relation Extraction. Journal of Machine Learning Research 3, 1083–1106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kavalec, M., Svatek, V., Buitelaar, P., Cimmiano, P., Magnini, B. (eds.): A Study on Automated Relation Labelling in Ontology Learning. IOS Press, Amsterdam (2005)

    Google Scholar 

  10. Schutz, Buitelaar, P.: RelExt: A Tool for Relation Extraction from Text in Ontology Extension, pp. 593–606 (2005)

    Google Scholar 

  11. Soderland, S., Mandhani, B.: Moving from Textual Relations to Ontologized Relations. In: Proceedings of the 2007 AAAI Spring Symposium on Machine Reading (2007)

    Google Scholar 

  12. Trampuš, M., Mladenić, D.: Constructing Event Templates from Textual News. In: Workshop on: Intelligent Analysis and Processing of Web News Content (2009)

    Google Scholar 

  13. Leskovec, J., Grobelnik, M., Milic-Frayling, N.: Learning Sub-structures of Document Semantic Graphs for Document Summarization. In: Workshop on Link Analysis and Group Detection (LinkKDD), KDD 2004, Seattle, USA, August 22-24 (2004)

    Google Scholar 

  14. Rusu, D., Fortuna, B., Mladenić, D., Grobelnik, M., Sipoš, R.: Document Visualization Based on Semantic Graphs. In: IV 2009 (2009)

    Google Scholar 

  15. Bies, A., Ferguson, M., Katz, K., Mac-Intyre, R.: Bracketing guidelines for Treebank II style Penn Treebank project. Technical report, University of Pennsylvania (1995)

    Google Scholar 

  16. Grobelnik, M., Mladenić, D.: Text Mining Recipes. Springer, Heidelberg (2009), http://www.textmining.net

    Google Scholar 

  17. Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervised Learning of Semantic Relations between Concepts of a Molecular Biology Ontology. In: IJCAI 2005, pp. 659–664 (2005)

    Google Scholar 

  18. Pennacchiotti, M., Pantel, P.: Ontologizing Semantic Relations. In: ACL 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sipoš, R., Mladenić, D., Grobelnik, M., Brank, J. (2009). Modeling Common Real-Word Relations Using Triples Extracted from n-Grams. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds) The Semantic Web. ASWC 2009. Lecture Notes in Computer Science, vol 5926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10871-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10871-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10870-9

  • Online ISBN: 978-3-642-10871-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics