Abstract
In this paper, we establish a mass formula for even codes over . In particular, a formula giving the total number of distinct Type II self-dual codes over of length n is established for each positive integer n divisible by 8.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bannai, E., Dougherty, S.T., Harada, M., Oura, M.: Type II Codes, Even Unimodular Lattices and Invariant Rings. IEEE Trans. Inform. Theory 45, 1194–1205 (1999)
Betty, R.A.L., Munemasa, A.: Mass Formula for Self-Orthogonal Codes over . Journal of Combinatorics, Information and System Sciences (to appear)
Conway, J.H., Sloane, N.J.A.: Self-Dual Codes over the Integers Modulo 4. J. Combin. Theory Ser. A 62, 30–45 (1993)
Dougherty, S.T., Gulliver, T.A., Wong, J.: Self-Dual Codes over and . Designs, Codes and Cryptogr. 41, 235–249 (2006)
Gaborit, P.: Mass Formulas for Self-Dual Codes over and Rings. IEEE Trans. Inform. Theory 42, 1222–1228 (1996)
Harada, M., Munemasa, M.: On the Classification of Self-Dual -Codes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 81–93. Springer, Heidelberg (2009)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, United Kingdom (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Betsumiya, K., Betty, R.A.L., Munemasa, A. (2009). Mass Formula for Even Codes over . In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-10868-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10867-9
Online ISBN: 978-3-642-10868-6
eBook Packages: Computer ScienceComputer Science (R0)