Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mass Formula for Even Codes over

  • Conference paper
Cryptography and Coding (IMACC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5921))

Included in the following conference series:

Abstract

In this paper, we establish a mass formula for even codes over . In particular, a formula giving the total number of distinct Type II self-dual codes over of length n is established for each positive integer n divisible by 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bannai, E., Dougherty, S.T., Harada, M., Oura, M.: Type II Codes, Even Unimodular Lattices and Invariant Rings. IEEE Trans. Inform. Theory 45, 1194–1205 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betty, R.A.L., Munemasa, A.: Mass Formula for Self-Orthogonal Codes over . Journal of Combinatorics, Information and System Sciences (to appear)

    Google Scholar 

  3. Conway, J.H., Sloane, N.J.A.: Self-Dual Codes over the Integers Modulo 4. J. Combin. Theory Ser. A 62, 30–45 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dougherty, S.T., Gulliver, T.A., Wong, J.: Self-Dual Codes over and . Designs, Codes and Cryptogr. 41, 235–249 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gaborit, P.: Mass Formulas for Self-Dual Codes over and Rings. IEEE Trans. Inform. Theory 42, 1222–1228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harada, M., Munemasa, M.: On the Classification of Self-Dual -Codes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 81–93. Springer, Heidelberg (2009)

    Google Scholar 

  7. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, United Kingdom (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Betsumiya, K., Betty, R.A.L., Munemasa, A. (2009). Mass Formula for Even Codes over . In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10868-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10867-9

  • Online ISBN: 978-3-642-10868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics