Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rough Entropy Based k-Means Clustering

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5908))

Abstract

Data clustering algorithmic schemes receive much careful research insight due to the prominent role that clustering plays during data analysis. Proper data clustering reveals data structure and makes possible further data processing and analysis. In the application area, k-means clustering algorithms are most often exploited in almost all important branches of data processing and data exploration. During last decades, a great deal of new algorithmic techniques have been invented and implemented that extend basic k-means clustering methods. In this context, fuzzy and rough k-means clustering presents robust modifications of basic k-means clustering that are aimed at better apprehension of data structure that advantageously incorporate notions from fuzzy and rough set theories. In the paper, an extension of rough k-means clustering into rough entropy domain has been introduced. Experimental results suggest that proposed algorithm outperforms standard k-means clustering methods applied in the area of image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asharaf, S., Murty, M.N.: A Rough Fuzzy Approach to Web Usage Categorization. Fuzzy Sets and Systems 148, 119–129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lingras, P., West, C.: Interval Set Clustering of Web Users with Rough k-Means. Journal of Intelligent Information Systems 23(1), 5–16 (2004)

    Article  MATH  Google Scholar 

  3. Maji, P., Pal, S.K.: RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets. Fundamenta Informaticae 80(4), 477–498 (2007)

    MathSciNet  Google Scholar 

  4. Malyszko, D., Stepaniuk, J.: Granular Multilevel Rough Entropy Thresholding in 2D Domain. In: IIS 2008, 16th International Conference Intelligent Information Systems, Zakopane, Poland, June 16-18, pp. 151–160 (2008)

    Google Scholar 

  5. Malyszko, D., Stepaniuk, J.: Standard and Fuzzy Rough Entropy Clustering Algorithms in Image Segmentation. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 409–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 2509–2517 (2005)

    Article  Google Scholar 

  7. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007); Rough sets: Some extensions. Information Sciences 177(1), 28–40 (2007); Rough sets and Boolean reasoning. Information Sciences 177(1), 41–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)

    Google Scholar 

  9. Stepaniuk, J.: Rough–Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  10. Zhou, T., Zhang, Y.N., Lu, H.L.: Rough k-means Cluster with Adaptive Parameters. In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, August 19-22, pp. 3063–3068 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Małyszko, D., Stepaniuk, J. (2009). Rough Entropy Based k-Means Clustering. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics