Abstract
In this paper, we discuss some structures on the ordered set of rough approximations in a more general setting of complete atomic Boolean lattices. Further, we define an induced map from the map defined from the atoms of complete atomic Boolean lattice (\(\mathcal A\)(B)) to that lattice B. We also study the connections between the rough approximations x ∨ , x ∧ . defined with respect to the induced map and the rough approximations \(x^\blacktriangledown, x^\blacktriangle\)..defined with respect to the considered map under certain conditions on the map.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allam, A.A., Bakeir, M.Y., Abo-Tabl, E.A.: New approach for Basic Rough set Concepts. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 64–73. Springer, Heidelberg (2005)
Allam, A.A., Bakeir, M.Y., Abo-Tabl, E.A.: Some Methods for Generating Topologies by Relations. Bull. Malays. Math. Sci. Soc. 31(2,1), 35–45 (2008)
Bakhir, M.Y.: On Pre-Granulation (2008) (preprint)
Degang, C.: Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Information Sciences 176, 1829–1848 (2006)
Gehrke, M., Walker, E.: On the Structure of Rough Sets. Bulletin of the Polish academy of sciences Mathematics 40, 235–245 (1992)
Gratzer, G.: General Lattice Theory. Academic Press, New York (1978)
Jarvinen, J.: On the Structure of Rough Approximations. Fundamenta Informaticae 53, 135–153 (2002)
Jarvinen, J., Kondo, M., Kortelainen, J.: Modal-Like Operators in Boolean Lattices, Galois Connections and Fixed Points. Fundamenta Informaticae 76, 129–145 (2007)
Kalmbach, G.: Orthomodular Lattices. Academic Press Inc., London (1983)
Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 5, 341–356 (1982)
Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12(2), 331–336 (2000)
Szasz, G.: Introduction to Lattice Theory. Academic Press Inc., London (1963)
Zhu, W.: Generalized rough sets based on relations. Information Sciences 177(22), 4997–5011 (2007)
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximation Reasoning 15, 291–317 (1996)
Yao, Y.Y.: Relational Interpretations of Neighborhood Operators and Rough Set Approximation Operators. Information Sciences 111(1-4), 239–259 (1998)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109(1-4), 21–47 (1998)
Yao, Y.Y.: On generalizing Pawlak approximation operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nagarajan, E.K.R., Umadevi, D. (2009). New Approach in Defining Rough Approximations. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-10646-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10645-3
Online ISBN: 978-3-642-10646-0
eBook Packages: Computer ScienceComputer Science (R0)