Abstract
We study the computability and complexity of the exploration problem in a class of highly dynamic graphs: periodically varying (PV) graphs, where the edges exist only at some (unknown) times defined by the periodic movements of carriers. These graphs naturally model highly dynamic infrastructure-less networks such as public transports with fixed timetables, low earth orbiting (LEO) satellite systems, security guards’ tours, etc. We establish necessary conditions for the problem to be solved. We also derive lower bounds on the amount of time required in general, as well as for the PV graphs defined by restricted classes of carriers movements: simple routes, and circular routes. We then prove that the limitations on computability and complexity we have established are indeed tight. We do so constructively presenting two worst case optimal solution algorithms, one for anonymous systems, and one for those with distinct nodes ids.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on Computing 29, 1164–1188 (2000)
Avin, C., Koucky, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP), pp. 121–132 (2008)
Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176(1), 1–21 (2002)
Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Transactions on Algorithms 4(4) (2008)
Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)
Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326, 343–362 (2004)
Flocchini, P., Mans, B., Santoro, N.: Exploration of Periodically Varying Graphs. CoRR abs/0909.4369, 22 pages (2009)
Jacquet, P., Mans, B., Rodolakis, G.: Information propagation speed in mobile and delay tolerant networks. IEEE INFOCOM, 244–252 (2009)
Liu, C., Wu, J.: Scalable Routing in Cyclic Mobile Networks. IEEE Transactions on Parallel and Distributed Systems 20(9), 1325–1338 (2009)
Shannon, C.E.: Presentation of a maze-solving machine. In: 8th Conf. of the Josiah Macy Jr. Found (Cybernetics), pp. 173–180 (1951)
Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proc. ACM SIGCOMM Workshop on delay-tolerant networking, pp. 252–259 (2005)
Zhang, X., Kurose, J., Levine, B.N., Towsley, D., Zhang, H.: Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing. In: Proceedings of the 13th annual ACM International Conference on Mobile Computing and Networking, pp. 195–206 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Flocchini, P., Mans, B., Santoro, N. (2009). Exploration of Periodically Varying Graphs. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-10631-6_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10630-9
Online ISBN: 978-3-642-10631-6
eBook Packages: Computer ScienceComputer Science (R0)