Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic 3-Sided Planar Range Queries with Expected Doubly Logarithmic Time

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We consider the problem of maintaining dynamically a set of points in the plane and supporting range queries of the type [a,b]×( − ∞ , c]. We assume that the inserted points have their x-coordinates drawn from a class of smooth distributions, whereas the y-coordinates are arbitrarily distributed. The points to be deleted are selected uniformly at random among the inserted points. For the RAM model, we present a linear space data structure that supports queries in O(loglogn + t) expected time with high probability and updates in O(loglogn) expected amortized time, where n is the number of points stored and t is the size of the output of the query. For the I/O model we support queries in O(loglog B n + t/B) expected I/Os with high probability and updates in O(log B logn) expected amortized I/Os using linear space, where B is the disk block size. The data structures are deterministic and the expectation is with respect to the input distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Erickson, J.: Geometric range rearching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, pp. 1–56. American Mathematical Society Press (1999)

    Google Scholar 

  2. Kanellakis, P.C., Ramaswamy, S., Vengroff, D.E., Vitter, J.S.: Indexing for data models with constraints and classes. In: Proc. ACM SIGACT-SIGMOD-SIGART PODS, pp. 233–243 (1993)

    Google Scholar 

  3. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Willard, D.E.: Examining computational geometry, van emde boas trees, and hashing from the perspective of the fusion tree. SIAM J. Comput. 29(3), 1030–1049 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and optimal range search indexing. In: Proc. ACM SIGMOD-SIGACT-SIGART PODS, pp. 346–357 (1999)

    Google Scholar 

  6. Andersson, A., Mattsson, C.: Dynamic interpolation search in o(log log n) time. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 15–27. Springer, Heidelberg (1993)

    Google Scholar 

  7. Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

    Google Scholar 

  8. Andersson, A.: Faster deterministic sorting and searching in linear space. In: Proc. IEEE FOCS, pp. 135–141 (1996)

    Google Scholar 

  9. Thorup, M.: Faster deterministic sorting and priority queues in linear space. In: Proc. ACM-SIAM SODA, pp. 550–555 (1998)

    Google Scholar 

  10. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. ACM 54(3), 13 (2007)

    Article  MathSciNet  Google Scholar 

  11. Arge, L., Vitter, J.S.: Optimal dynamic interval management in external memory (extended abstract). In: Proc. IEEE FOCS, pp. 560–569 (1996)

    Google Scholar 

  12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mehlhorn, K., Tsakalidis, A.: Dynamic interpolation search. J. ACM 40(3), 621–634 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Dynamic interpolation search revisited. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 382–394. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Kaporis, A.C., Makris, C., Mavritsakis, G., Sioutas, S., Tsakalidis, A.K., Tsichlas, K., Zaroliagis, C.D.: ISB-tree: A new indexing scheme with efficient expected behaviour. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 318–327. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Kaporis, A.C., Sioutas, S., Tsakalidis, K., Tsichlas, K. (2009). Dynamic 3-Sided Planar Range Queries with Expected Doubly Logarithmic Time. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics