Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

  • 1370 Accesses

Abstract

As a novel information retrieval task, opinion retrieval has attracted considerable amount of attention in recent years. Current researches mainly first computed the topic relevant and opinion relevant scores of the documents and then combined these two scores as the final ranking score using some combination function. One major problem in existing works is that the score combination functions are defined in advance regardless of domains. However, there is no evidence that these two scores should be combined in a unique way. In this paper, we propose to learn the combination functions automatically for retrieval tasks of different domains. We employ the popular Genetic Programming framework for the learning tasks. To perform the whole opinion retrieval task, we also design a novel opinion retrieval system to compute the topic and opinion relevant scores and then learn the optimal combination function to integrate the topic and opinion relevant scores. In the experiments, we compare our system with other state-of-the-art work on a public dataset and the experimental results show that our system performs comparatively with others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, M., Ye, X.: A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval. In: Proceedings of SIGIR 2008, pp. 411–418 (2008)

    Google Scholar 

  2. Eguchi, K., Lavrenko, V.: Sentiment Retrieval using Generative Models. In: Proceedings of EMNLP 2006, pp. 345–354 (2006)

    Google Scholar 

  3. Mishne, G.: Multiple Ranking Strategies for Opinion Retrieval in Blogs. Online Proceedings of TREC (2006)

    Google Scholar 

  4. Yang, K., Yu, N., Valerio, A., Zhang, H.: WIDIT in TREC2006 Blog track. Online Proceedings of TREC (2006)

    Google Scholar 

  5. Liao, X., Cao, D., et al.: Combing Language Model with Sentiment Analysis for Opinoin Retreival of Blog-Post. Online Proceedings of TREC (2006)

    Google Scholar 

  6. Zhang, W., Yu, C.: UIC at TREC 2006 Blog Track. Online Proceedings of TREC (2006)

    Google Scholar 

  7. Mishne, G.: Using blog properties to improve retrieval. In: Proceedings of the International Conference on Weblogs and Social Media, ICSWM (2007)

    Google Scholar 

  8. He, B., Macdonald, C., He, J., Ounis, I.: An effective statistical approach to blog post opinion retrieval. In: Proceedings of CIKM 2008 (2008)

    Google Scholar 

  9. He, B., Macdonald, C., Ounis, I.: Ranking opinionated blog posts using OpinionFinder. In: Proceedings of SIGIR 2008 (2008)

    Google Scholar 

  10. Zhang, W., Yu, C., Meng, W.: Opinion retrieval from blogs. In: Proceedings of CIKM 2007 (2007)

    Google Scholar 

  11. Zhang, W., Jia, L., Yu, C., Meng, W.: Improve the effectiveness of the opinion retrieval and opinion polarity classification. In: Proceeding of CIKM 2008 (2008)

    Google Scholar 

  12. Ounis, I., de Rijke, M., Macdonald, C., Mishne, G., Soboroff, I.: Overview of the TREC 2006 Blog Track. Online Proceedings of TREC (2006)

    Google Scholar 

  13. Macdonald, C., Ounis, I.: Overview of the TREC 2007 Blog Track. Online Proceedings of TREC (2007)

    Google Scholar 

  14. Turney, P.D.: Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. In: Proceedings of ACL 2002, pp. 417–424 (2002)

    Google Scholar 

  15. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)

    Google Scholar 

  16. Shen, D., Pan, R., et al.: Q2C@UST: our winning solution to query classification in KDDCUP 2005. SIGKDD Explorations 7(2), 100–110 (2005)

    Article  Google Scholar 

  17. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  18. Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proceedings of UAI 1999 (1999)

    Google Scholar 

  19. Stone, P., Dunphy, D., Smith, M., Ogilvie, D.: The General Inquirer: A Computer Approach to Content Anaysis. MIT Press, Cambridge (1966)

    Google Scholar 

  20. Esuli, A., Sebastiani, F.: Determining the semantic orientation of terms through gloss classification. In: Proceedings of CIKM 2005, pp. 617–624 (2005)

    Google Scholar 

  21. Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Proceedings of SIGKDD 2004 (2004)

    Google Scholar 

  23. Fan, W., Gordon, M.D., Pathak, P., Xi, W., Fox, E.A.: Ranking function optimization for effective web search by genetic programming: An empirical study. In: Proc. of HICSS 2004, Hawaii, pp. 105–112 (2004)

    Google Scholar 

  24. Lacerda, A., Cristo, M., Goncalves, M.A., Fan, W., Ziviani, N., Neto, B.R.: “Learning to advertise”. In: SIGIR 2006: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, New York, NY, USA, pp. 549–556 (2006)

    Google Scholar 

  25. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  26. Qiu, G., Zhang, F., Bu, J., Chen, C.: Domain Specific Opinion Retrieval. In: Proceedings of the Fifth Asia Information Retrieval Symposium, Japan (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F., Qiu, G., Bu, J., Qu, M., Chen, C. (2009). Learning to Retrieve Opinions. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics