Abstract
Locust Swarms are a newly developed multi-optima particle swarm. They were explicitly developed for non-globally convex search spaces, and their non-convergent search behaviours can also be useful for problems with fractal and fractured landscapes. On the 1000-dimensional “FastFractal” problem used in the 2008 CEC competition on Large Scale Global Optimization, Locust Swarms can perform better than all of the methods in the competition. Locust Swarms also perform very well on a real-world optimization problem that has a fractured landscape. The extent and the effects of a fractured landscape are observed with a practical new measurement that is affected by the degree of fracture and the lack of regularity and symmetry in a fitness landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beyer, H.-G., Schwefel, H.-P.: Evolution Strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)
Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with Population Size Reduction. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2032–2039. IEEE Press, Los Alamitos (2008)
Chen, S.: An Analysis of Locust Swarms on Large Scale Global Optimization Problems. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS, vol. 5865, pp. 232–241. Springer, Heidelberg (2009)
Chen, S.: Locust Swarms – A New Multi-Optima Search Technique. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1745–1752. IEEE Press, Los Alamitos (2009)
Chen, S., Miura, K., Razzaqi, S.: Analyzing the Role of “Smart” Start Points in Coarse Search-Greedy Search. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 13–24. Springer, Heidelberg (2007)
Chen, S., Razzaqi, S., Lupien, V.: Towards the Automated Design of Phased Array Ultrasonic Transducers – Using Particle Swarms to find “Smart” Start Points. In: Okuno, H.G., Moonis, A. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 313–323. Springer, Heidelberg (2007)
Chen, S., Razzaqi, S., Lupien, V.: An Evolution Strategy for Improving the Design of Phased Array Transducers. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 2859–2863. IEEE Press, Los Alamitos (2006)
Hendtlass, T.: WoSP: A Multi-Optima Particle Swarm Algorithm. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 727–734. IEEE Press, Los Alamitos (2005)
Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Solving Large Scale Global Optimization Using Improved Particle Swarm Optimizer. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1777–1784. IEEE Press, Los Alamitos (2008)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)
MacNich, C.: Towards Unbiased Benchmarking of Evolutionary and Hybrid Algorithms for Real-valued Optimisation. Connection Science 19(4), 361–385 (2007)
MacNish, C., Yao, X.: Direction Matters in High-Dimensional Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2372–2379. IEEE Press, Los Alamitos (2008)
Malan, K., Engelbrecht, A.: Quantifying Ruggedness of Continuous Landscapes using Entropy. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1440–1447. IEEE Press, Los Alamitos (2009)
Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale Global Optimization. Technical Report (2007), http://www.ntu.edu.sg/home/EPNSugan
Tseng, L.-Y., Chen, C.: Multiple Trajectory Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3052–3059. IEEE Press, Los Alamitos (2008)
Wang, Y., Li, B.: A Restart Univariate Estimation of Distribution Algorithm: Sampling under Mixed Gaussian and Levy probability Distribution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3917–3924. IEEE Press, Los Alamitos (2008)
Yang, Z., Tang, K., Yao, X.: Multilevel Cooperative Coevolution for Large Scale Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE Press, Los Alamitos (2008)
Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Large Scale Global Optimization using Differential Evolution with Self-adaptation and Cooperative Co-evolution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3718–3725. IEEE Press, Los Alamitos (2008)
Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3845–3852. IEEE Press, Los Alamitos (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, S., Lupien, V. (2009). Optimization in Fractal and Fractured Landscapes Using Locust Swarms. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-10427-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10426-8
Online ISBN: 978-3-642-10427-5
eBook Packages: Computer ScienceComputer Science (R0)