Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimization in Fractal and Fractured Landscapes Using Locust Swarms

  • Conference paper
Artificial Life: Borrowing from Biology (ACAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5865))

Included in the following conference series:

Abstract

Locust Swarms are a newly developed multi-optima particle swarm. They were explicitly developed for non-globally convex search spaces, and their non-convergent search behaviours can also be useful for problems with fractal and fractured landscapes. On the 1000-dimensional “FastFractal” problem used in the 2008 CEC competition on Large Scale Global Optimization, Locust Swarms can perform better than all of the methods in the competition. Locust Swarms also perform very well on a real-world optimization problem that has a fractured landscape. The extent and the effects of a fractured landscape are observed with a practical new measurement that is affected by the degree of fracture and the lack of regularity and symmetry in a fitness landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beyer, H.-G., Schwefel, H.-P.: Evolution Strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with Population Size Reduction. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2032–2039. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  3. Chen, S.: An Analysis of Locust Swarms on Large Scale Global Optimization Problems. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS, vol. 5865, pp. 232–241. Springer, Heidelberg (2009)

    Google Scholar 

  4. Chen, S.: Locust Swarms – A New Multi-Optima Search Technique. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1745–1752. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

  5. Chen, S., Miura, K., Razzaqi, S.: Analyzing the Role of “Smart” Start Points in Coarse Search-Greedy Search. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 13–24. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chen, S., Razzaqi, S., Lupien, V.: Towards the Automated Design of Phased Array Ultrasonic Transducers – Using Particle Swarms to find “Smart” Start Points. In: Okuno, H.G., Moonis, A. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 313–323. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Chen, S., Razzaqi, S., Lupien, V.: An Evolution Strategy for Improving the Design of Phased Array Transducers. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 2859–2863. IEEE Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  8. Hendtlass, T.: WoSP: A Multi-Optima Particle Swarm Algorithm. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 727–734. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  9. Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Solving Large Scale Global Optimization Using Improved Particle Swarm Optimizer. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1777–1784. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  10. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  11. MacNich, C.: Towards Unbiased Benchmarking of Evolutionary and Hybrid Algorithms for Real-valued Optimisation. Connection Science 19(4), 361–385 (2007)

    Article  Google Scholar 

  12. MacNish, C., Yao, X.: Direction Matters in High-Dimensional Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2372–2379. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  13. Malan, K., Engelbrecht, A.: Quantifying Ruggedness of Continuous Landscapes using Entropy. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1440–1447. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

  14. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale Global Optimization. Technical Report (2007), http://www.ntu.edu.sg/home/EPNSugan

  15. Tseng, L.-Y., Chen, C.: Multiple Trajectory Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3052–3059. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  16. Wang, Y., Li, B.: A Restart Univariate Estimation of Distribution Algorithm: Sampling under Mixed Gaussian and Levy probability Distribution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3917–3924. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  17. Yang, Z., Tang, K., Yao, X.: Multilevel Cooperative Coevolution for Large Scale Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  18. Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Large Scale Global Optimization using Differential Evolution with Self-adaptation and Cooperative Co-evolution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3718–3725. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  19. Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3845–3852. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, S., Lupien, V. (2009). Optimization in Fractal and Fractured Landscapes Using Locust Swarms. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10427-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10426-8

  • Online ISBN: 978-3-642-10427-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics