Nothing Special   »   [go: up one dir, main page]

Skip to main content

Direct Control of an Active Tactile Sensor Using Echo State Networks

  • Chapter
Human Centered Robot Systems

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 6))

Abstract

Tactile sensors (antennae) play an important role in the animal kingdom. They are also very useful as sensors in robotic scenarios, where vision systems may fail. Active tactile movements increase the sampling performance. Here we directly control movements of the antenna of a simulated hexapod using an echo state network (ESN). ESNs can store multiple motor patterns as attractors in a single network and generate novel patterns by combining and blending already learned patterns using bifurcation inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dürr, V., Krause, A.: The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection. In: Berns, K., Dillmann, R. (eds.) Climbing and walking robots - from biology to industrial applications, Proceeding of Fourth International Conference Climbing and Walking Robots (CLAWAR 2001), pp. 87–96. Professional Engineering Publishing, Bury St. Edmunds (2001)

    Google Scholar 

  2. Dürr, V., Krause, A.F., Neitzel, M., Lange, O., Reimann, B.: Bionic tactile sensor for near-range search, localisation and material classification. In: Berns, K., Luksch, T. (eds.) Autonome Mobile Systeme 2007. Fachgespräch Kaiserslautern, vol. 20, pp. 240–246. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Computation 13(10), 2201–2220 (2001)

    Article  MATH  Google Scholar 

  4. Hochreiter, S., Bengio, Y.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  5. Hogan, N.: An organizing principle for a class of voluntary movements. Journal of Neuroscience 4, 2745–2754 (1984)

    Google Scholar 

  6. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 593–600. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the ”‘echo state network”‘ approach. Tech. Rep. GMD Report 159, German National Research Center for Information Technology (2002)

    Google Scholar 

  8. Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky integrator neurons. Neural Networks 20(3), 335–352 (2007)

    Article  MATH  Google Scholar 

  9. Jäger, H.: Generating exponentially many periodic attractors with linearly growing echo state networks. Technical report 3, IUB (2006)

    Google Scholar 

  10. Jäger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  11. Kaneko, M., Kanayma, N., Tsuji, T.: Active antenna for contact sensing. IEEE Transactions on Robotics and Automation 14, 278–291 (1998)

    Article  Google Scholar 

  12. Kramer, O.: Fast blackbox optimization: Iterated local search and the strategy of powell. In: The 2009 International Conference on Genetic and Evolutionary Methods, GEM 2009 (in press, 2009)

    Google Scholar 

  13. Krause, A.F., Bläsing, B., Schack, T.: Modellierung kognitiver Strukturen mit hierarchischen selbstorganisierenden Karten. In: Pfeffer, I., Alfermann, D. (eds.) 41. Jahrestagung der Arbeitsgemeinschaft für Sportpsychologie (asp), vol. 188, p. 91. Czwalina Verlag Hamburg (2009)

    Google Scholar 

  14. Krause, A.F., Dürr, V.: Tactile efficiency of insect antennae with two hinge joints. Biological Cybernetics 91, 168–181 (2004)

    Article  MATH  Google Scholar 

  15. Krause, A.F., Schütz, C., Dürr, V.: Active tactile sampling patterns during insect walking and climbing. In: Proc. Göttingen Neurobiol. Conf., vol. 31 (2007)

    Google Scholar 

  16. Lange, O., Reimann, B.: Vorrichtung und Verfahren zur Erfassung von Hindernissen. German Patent 102005005230 (2005)

    Google Scholar 

  17. Reinhart, R.F., Steil, J.J.: Attractor-based computation with reservoirs for online learning of inverse kinematics. In: European Symposium on Artificial Neural Networks (ESANN) – Advances in Computational Intelligence and Learning (2009)

    Google Scholar 

  18. Rolf, M., Steil, J.J., Gienger, M.: Efficient exploration and learning of whole body kinematics. In: IEEE 8th International Conference on Development and Learning (2009)

    Google Scholar 

  19. Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)

    Article  Google Scholar 

  20. Staudacher, E., Gebhardt, M.J., Dürr, V.: Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv. Insect. Physiol. 32, 49–205 (2005)

    Article  Google Scholar 

  21. Steil, J.J.: Backpropagation - decorrelation: online recurrent learning with o(n) complexity. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 843–848 (2004)

    Google Scholar 

  22. Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks 20(3), 353–364 (2007)

    Article  MATH  Google Scholar 

  23. Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks 12, 1131–1141 (1999)

    Article  Google Scholar 

  24. Tani, J.: On the interactions between top-down anticipation and bottom-up regression. Frontiers in Neurorobotics 1, 2 (2007)

    Article  Google Scholar 

  25. Tani, J., Itob, M., Sugitaa, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Networks 17, 1273–1289 (2004)

    Article  Google Scholar 

  26. Ueno, N., Svinin, M., Kaneko, M.: Dynamic contact sensing by flexible beam. IEEE/ASME Transactions on Mechatronics 3, 254–264 (1998)

    Article  Google Scholar 

  27. Vrugt, J., Robinson, B., Hyman, J.: Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Transactions on Evolutionary Computation 13(2), 243–259 (2008)

    Article  Google Scholar 

  28. Webb, B.: Neural mechanisms for prediction: do insects have forward models? Trends in Neuroscience 27, 278–282 (2004)

    Article  Google Scholar 

  29. Webots: Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com

  30. Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  31. Wiener, N.: Extrapolation, interpolation, and smoothing of stationary time series with engineering applications. Cambridge, Technology Press of Massachusetts Institute of Technology and New York, Wiley (1949)

    Google Scholar 

  32. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1(2), 270–280 (1989), http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.2%.270

    Article  Google Scholar 

  33. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology 4(11) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krause, A.F., Bläsing, B., Dürr, V., Schack, T. (2009). Direct Control of an Active Tactile Sensor Using Echo State Networks. In: Ritter, H., Sagerer, G., Dillmann, R., Buss, M. (eds) Human Centered Robot Systems. Cognitive Systems Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10403-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10403-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10402-2

  • Online ISBN: 978-3-642-10403-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics