Abstract
Tactile sensors (antennae) play an important role in the animal kingdom. They are also very useful as sensors in robotic scenarios, where vision systems may fail. Active tactile movements increase the sampling performance. Here we directly control movements of the antenna of a simulated hexapod using an echo state network (ESN). ESNs can store multiple motor patterns as attractors in a single network and generate novel patterns by combining and blending already learned patterns using bifurcation inputs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dürr, V., Krause, A.: The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection. In: Berns, K., Dillmann, R. (eds.) Climbing and walking robots - from biology to industrial applications, Proceeding of Fourth International Conference Climbing and Walking Robots (CLAWAR 2001), pp. 87–96. Professional Engineering Publishing, Bury St. Edmunds (2001)
Dürr, V., Krause, A.F., Neitzel, M., Lange, O., Reimann, B.: Bionic tactile sensor for near-range search, localisation and material classification. In: Berns, K., Luksch, T. (eds.) Autonome Mobile Systeme 2007. Fachgespräch Kaiserslautern, vol. 20, pp. 240–246. Springer, Heidelberg (2007)
Haruno, M., Wolpert, D.M., Kawato, M.: Mosaic model for sensorimotor learning and control. Neural Computation 13(10), 2201–2220 (2001)
Hochreiter, S., Bengio, Y.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F. (eds.) A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, Los Alamitos (2001)
Hogan, N.: An organizing principle for a class of voluntary movements. Journal of Neuroscience 4, 2745–2754 (1984)
Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 593–600. MIT Press, Cambridge (2002)
Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the ”‘echo state network”‘ approach. Tech. Rep. GMD Report 159, German National Research Center for Information Technology (2002)
Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky integrator neurons. Neural Networks 20(3), 335–352 (2007)
Jäger, H.: Generating exponentially many periodic attractors with linearly growing echo state networks. Technical report 3, IUB (2006)
Jäger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)
Kaneko, M., Kanayma, N., Tsuji, T.: Active antenna for contact sensing. IEEE Transactions on Robotics and Automation 14, 278–291 (1998)
Kramer, O.: Fast blackbox optimization: Iterated local search and the strategy of powell. In: The 2009 International Conference on Genetic and Evolutionary Methods, GEM 2009 (in press, 2009)
Krause, A.F., Bläsing, B., Schack, T.: Modellierung kognitiver Strukturen mit hierarchischen selbstorganisierenden Karten. In: Pfeffer, I., Alfermann, D. (eds.) 41. Jahrestagung der Arbeitsgemeinschaft für Sportpsychologie (asp), vol. 188, p. 91. Czwalina Verlag Hamburg (2009)
Krause, A.F., Dürr, V.: Tactile efficiency of insect antennae with two hinge joints. Biological Cybernetics 91, 168–181 (2004)
Krause, A.F., Schütz, C., Dürr, V.: Active tactile sampling patterns during insect walking and climbing. In: Proc. Göttingen Neurobiol. Conf., vol. 31 (2007)
Lange, O., Reimann, B.: Vorrichtung und Verfahren zur Erfassung von Hindernissen. German Patent 102005005230 (2005)
Reinhart, R.F., Steil, J.J.: Attractor-based computation with reservoirs for online learning of inverse kinematics. In: European Symposium on Artificial Neural Networks (ESANN) – Advances in Computational Intelligence and Learning (2009)
Rolf, M., Steil, J.J., Gienger, M.: Efficient exploration and learning of whole body kinematics. In: IEEE 8th International Conference on Development and Learning (2009)
Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)
Staudacher, E., Gebhardt, M.J., Dürr, V.: Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv. Insect. Physiol. 32, 49–205 (2005)
Steil, J.J.: Backpropagation - decorrelation: online recurrent learning with o(n) complexity. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 843–848 (2004)
Steil, J.J.: Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks 20(3), 353–364 (2007)
Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks 12, 1131–1141 (1999)
Tani, J.: On the interactions between top-down anticipation and bottom-up regression. Frontiers in Neurorobotics 1, 2 (2007)
Tani, J., Itob, M., Sugitaa, Y.: Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Networks 17, 1273–1289 (2004)
Ueno, N., Svinin, M., Kaneko, M.: Dynamic contact sensing by flexible beam. IEEE/ASME Transactions on Mechatronics 3, 254–264 (1998)
Vrugt, J., Robinson, B., Hyman, J.: Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Transactions on Evolutionary Computation 13(2), 243–259 (2008)
Webb, B.: Neural mechanisms for prediction: do insects have forward models? Trends in Neuroscience 27, 278–282 (2004)
Webots: Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com
Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10), 1550–1560 (1990)
Wiener, N.: Extrapolation, interpolation, and smoothing of stationary time series with engineering applications. Cambridge, Technology Press of Massachusetts Institute of Technology and New York, Wiley (1949)
Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1(2), 270–280 (1989), http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.2%.270
Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology 4(11) (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Krause, A.F., Bläsing, B., Dürr, V., Schack, T. (2009). Direct Control of an Active Tactile Sensor Using Echo State Networks. In: Ritter, H., Sagerer, G., Dillmann, R., Buss, M. (eds) Human Centered Robot Systems. Cognitive Systems Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10403-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-10403-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10402-2
Online ISBN: 978-3-642-10403-9
eBook Packages: EngineeringEngineering (R0)