Nothing Special   »   [go: up one dir, main page]

Skip to main content

Speed Scaling to Manage Temperature

  • Conference paper
Theory and Practice of Algorithms in (Computer) Systems (TAPAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6595))

Abstract

We consider the speed scaling problem where the quality of service objective is deadline feasibility and the power objective is temperature. In the case of batched jobs, we give a simple algorithm to compute the optimal schedule. For general instances, we give a new online algorithm, and obtain an upper bound on the competitive ratio of this algorithm that is an order of magnitude better than the best previously known bound upper bound on the competitive ratio for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Algorithms for energy saving. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 173–186. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)

    Article  Google Scholar 

  3. Bansal, N., Bunde, D.P., Chan, H.L., Pruhs, K.: Average rate speed scaling. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 240–251. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bansal, N., Chan, H.L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in devices obeying the cube-root rule. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 144–155. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 1–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

    Article  Google Scholar 

  7. Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for temperature-aware task scheduling in microprocessor systems. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 120–130. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005)

    Article  Google Scholar 

  9. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for variable voltage processors. Proceedings of the National Academy of Sciences of the United States of America 103(11), 3983–3987 (2006)

    Article  Google Scholar 

  10. Rao, R., Vrudhula, S.: Performance optimal processor throttling under thermal constraints. In: Proceedings of the 2007 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, CASES 2007, pp. 257–266. ACM, New York (2007)

    Google Scholar 

  11. Snowdon, D.C., Ruocco, S., Heiser, G.: Power management and dynamic voltage scaling: Myths and facts. In: Proceedings of the 2005 Workshop on Power Aware Real-time Computing, New Jersey, USA (September 2005)

    Google Scholar 

  12. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In: FOCS 1995: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, p. 374. IEEE Computer Society Press, Washington, DC (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atkins, L., Aupy, G., Cole, D., Pruhs, K. (2011). Speed Scaling to Manage Temperature. In: Marchetti-Spaccamela, A., Segal, M. (eds) Theory and Practice of Algorithms in (Computer) Systems. TAPAS 2011. Lecture Notes in Computer Science, vol 6595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19754-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19754-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19753-6

  • Online ISBN: 978-3-642-19754-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics