Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Scenario-Based Approach for Robust Linear Optimization

  • Conference paper
Theory and Practice of Algorithms in (Computer) Systems (TAPAS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6595))

Abstract

Finding robust solutions of an optimization problem is an important issue in practice. The established concept of Ben-Tal et al. [2] requires that a robust solution is feasible for all possible scenarios. However, this concept is very conservative and hence may lead to solutions with a bad objective value and is in many cases hard to solve. Thus it is not suitable for most practical applications. In this paper we suggest an algorithm for calculating robust solutions that is easy to implement and not as conservative as the strict robustness approach. We show some theoretical properties of our approach and evaluate it using linear programming problems from NetLib.

partially supported by grant SCHO 1140/3-1 within the DFG programme Algorithm Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Erera, A.L., Morales, J.C., Svalesbergh, M.: Robust optimization for empty repositioning problems. Operations Research 57(2), 468–483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  3. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Programming A 99, 351–376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Mathematics of Operations Research 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Programming A 88, 411–424 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., Schöbel, A.: Recoverable robustness in shunting and timetabling. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 28–60. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Drezner, Z., Klamroth, K., Schöbel, A., Wesolowsky, G.: The weber problem. In: Drezner, Z., Hamacher, H.W. (eds.) Location Theory - Applications and Theory, ch. 1, pp. 1–36. Springer, Heidelberg (2001)

    Google Scholar 

  9. Fischetti, M., Monaci, M.: Light robustness. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 61–84. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM Journal of Matrix Anal. Appl. 18, 1034–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goerigk, M., Schöbel, A.: An empirical analysis of robustness concepts for timetabling. In: Erlebach, T., Lübbecke, M. (eds.) Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, Dagstuhl, Germany. OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 100–113. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  12. Gurobi Optimization, Inc., Houston, Texas. Gurobi Optimizer Reference Manual Version 3.0 (September 2010)

    Google Scholar 

  13. Juel, H., Love, R.F.: Hull properties in locationproblems. European Journal of Operational Research 12, 262–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  15. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Plastria, F.: Localization in single facility location. European Journal of Operational Research 18, 215–219 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research 21, 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stiller, S.: Extending concepts of reliability. Network creation games, real-time scheduling, and robust optimization. PhD thesis, TU Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goerigk, M., Schöbel, A. (2011). A Scenario-Based Approach for Robust Linear Optimization. In: Marchetti-Spaccamela, A., Segal, M. (eds) Theory and Practice of Algorithms in (Computer) Systems. TAPAS 2011. Lecture Notes in Computer Science, vol 6595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19754-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19754-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19753-6

  • Online ISBN: 978-3-642-19754-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics