Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6589))

Abstract

This paper describes a body of work developed over the past five years. The work addresses the use of Bayesian network (BN) models for representing and predicting social/organizational behaviors. The topics covered include model construction, validation, and use. These topics show the bulk of the lifetime of such model, beginning with construction, moving to validation and other aspects of model “critiquing”, and finally demonstrating how the modeling approach might be used to inform policy analysis. The primary benefits of using a well-developed computational, mathematical, and statistical modeling structure, such as BN, are 1) there are significant computational, theoretical and capability bases on which to build 2) the ability to empirically critique the model, and potentially evaluate competing models for a social/behavioral phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jensen, F., Nielsen, T.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, New York (2007)

    Book  MATH  Google Scholar 

  2. McCauley, C., Moskalenko, S.: Mechanisms of Political Radicalization: Pathways Toward Terrorism. Terrorism and Political Violence 20, 416–433 (2008)

    Article  Google Scholar 

  3. Kahneman, D., Tversky, A.: Judgment under Uncertainty: Heuristics and Biases. Science 4157, 1124–1131 (1974)

    Google Scholar 

  4. Renooij, S.: Probability Elicitation for Belief Networks: Issues to Consider. Knowledge Engineering Review 16, 255–269 (2001)

    Article  Google Scholar 

  5. Green, P., Krieger, A., Wind, Y.: Thirty Years of Conjoint Analysis: Reflections and Prospects. Interfaces 73, S56–S73 (2001)

    Article  Google Scholar 

  6. Walsh, S., Dalton, A., White, A., Whitney, P.: Parameterizing Bayesian Network Representations of Social-Behavioral Models by Expert Elicitation: A Novel Application of Conjoint Analysis. In: Proceedings of Workshop on Current Issues in Predictive Approaches to Intelligent and Security Analytics (PAISA), pp. 227–232. IEEE Press, Los Alamitos (2010)

    Google Scholar 

  7. Cox, D., Hinkley, D.: Theoretical Statistics. Chapman & Hall, London (1974)

    Book  MATH  Google Scholar 

  8. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Journal of Machine Learning 20, 197–243 (1995)

    MATH  Google Scholar 

  9. Riggelson, C.: Learning Parameters of Bayesian: Networks from Incomplete Data via Importance Sampling. International Journal of Approximate Reasoning 42, 69–83 (2005)

    Article  Google Scholar 

  10. Whitney, P., Walsh, S.: Calibrating Bayesian Network Representations of Social-Behavioral Models. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 338–345. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Cleveland, W.: Visualizing Data. Hobart Press, Summit (1993)

    Google Scholar 

  12. Minorities at Risk Organizational Behavior Dataset, http://www.cidcm.umd.edu/mar

  13. Schum, D.: The Evidential Foundations of Probabilistic Reasoning. John Wiley & Sons, New York (1994)

    Google Scholar 

  14. Coles, G.A., Brothers, A.J., Gastelum, Z.N., Thompson, S.E.: Utility of Social Modeling for Proliferation Assessment: Preliminary Assessment. PNNL 18438 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Whitney, P., White, A., Walsh, S., Dalton, A., Brothers, A. (2011). Bayesian Networks for Social Modeling. In: Salerno, J., Yang, S.J., Nau, D., Chai, SK. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2011. Lecture Notes in Computer Science, vol 6589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19656-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19656-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19655-3

  • Online ISBN: 978-3-642-19656-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics