Abstract
This paper introduces a work on identification of conjunct verbs in Hindi. The paper will first focus on investigating which noun-verb combination makes a conjunct verb in Hindi using a set of linguistic diagnostics. We will then see which of these diagnostics can be used as features in a MaxEnt based automatic identification tool. Finally we will use this tool to incorporate certain features in a graph based dependency parser and show an improvement over previous best Hindi parsing accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hook, P.E.: The Hindi compound verb: What it is and what it does? In: Singh, K.S. (ed.) Readings in Hindi-Urdu Linguistics. National Publishing House, Delhi (1974)
Mohanan, T.: Wordhood and Lexicality. NLLT 13, 75–134 (1995)
Alsina, A.: Complex Predicates. CSLI Publications, Stanford (1995)
Mohanan, T.: Arguments in Hindi. Center for the Study of Language and Information, Leland Stanford Junior University, United States (1994)
Butt, M.: Conscious Choice And Some Light Verbs In Urdu. In: Verma, M.K. (ed.) Manohar (1993)
Butt, M.: Complex Predicates Compendium, Tromso (May 2005)
Agnihotri, R.K.: Hindi, An Essential Grammar, pp. 121–126. Routledge, London (2007)
Bahl, K.C.: Studies in the Semantic Structure of Hindi. Motilal Banarasidass, Bihar (1974)
Bharati, A., Chaitanya, V., Sangal, R.: Natural Language Processing: A Paninian Perspective, pp. 65–106. Prentice Hall of India, New Delhi (1995)
Begum, R., Husain, S., Dhwaj, A., Sharma, D.M., Bai, L., Sangal, R.: Dependency Annotation Scheme for Indian Languages. In: The Third International Joint Conference on Natural Language Processing (IJCNLP), Hyderabad, India (2008)
Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D.M., Xia, F.: A Multi Representational and MultiLayered Treebank for Hindi/Urdu. In: The Third Linguistic Annotation Workshop (The LAW III) in Conjunction with ACL/IJCNLP, Singapore (2009)
Kellogg, S.H.R.: A Grammar of the Hindi Language. Routledge and Kegan Paul Ltd., London (1875)
Bailey, T.G.: Teach Yourself Urdu. In: Firth, J.R., Harley, A.H. (eds.), London (1956)
Guru, K.P.: Hindi Vyakarana. Kasi Nagari Pracarini Sabha, Kasi (1922)
Sharma, A.: A Basic Grammar of Modern Hindi. Government of India, Ministry of Education and Scientific Research, Delhi (1958)
Bahri, H.: Hindi Semantics. The Bharati Press, Allahabad (1959)
Bahl, K.C.: A Reference Grammar of Hindi. The University of Chicago, Chicago (1967)
Bhattacharyya, P., Chakrabarti, D., Sarma, V.M.: Complex predicates in Indian languages and wordnets. Language Resources and Evaluation 40(3-4), 331–355 (2006)
Mukerjee, A., Soni, A., Raina, A.M.: Detecting Complex Predicates in using POS Projection across parallel Corpora Aligned Hindi sentence. In: Workshop on Multiword Expressions, Sydney, pp. 11–18 (2006)
Sinha, R.M.K.: Mining Complex Predicates In Hindi Using A Parallel Hindi-English Corpus. In: ACL International Joint Conference in Natural Language Processing, p. 40 (2009)
Venkatapathy, S., Joshi, A.: Relative Compositionality of Noun+Verb Multi-word Expressions in Hindi. In: ICON (2005)
Chakrabarti, D., Mandalia, H., Priya, R., Sarma, V., Bhattacharyya, P.: Hindi Compound Verbs and their Automatic Extraction. In: International Conference on Computational Linguistics, pp. 27–30 (2008)
Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D. thesis (1998)
Rosenfeld, R.: Adaptive Statistical Language Modeling: A Maximum Entropy Approach. Ph.D. thesis, Carnegie Mellon University (1994)
Chen, S.F., Rosenfeld, R.: A Gaussian prior for smoothing maximum entropy models. Technical Report CMUCS-99-108, Carnegie Mellon University (1999)
Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Machine Learning 34(1-3), 177–210 (1999)
Ratnaparkhi, A., Reynar, J., Roukos, S.: A maximum entropy model for prepositional phrase attachment. In: ARPA Human Language Technology Workshop, pp. 250–255 (1994)
Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Empirical Methods in Natural Language Conference (1996)
Nigam, K., Lafferty, J., McCallum, A.: Using Maximum Entropy for Text Classification. In: IJCAI 1999 Workshop on Machine Learning for Information Filtering, pp. 61–67 (1999)
Berger, A., Pietra, D.: A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, Vol 22, 39–71 (1996)
Bharati, A., Husain, S., Vijay, M., Deepak, K., Sharma, D.M., Sangal, R.: Constraint Based Hybrid Approach to Parsing Indian Languages. In: The 23rd Pacific Asia Conference on Language, Information and Computation (PACLIC 23), Hong Kong (2009)
Gadde, P., Jindal, K., Husain, S., Sharma, D.M., Sangal, R.: Improving Data Driven Dependency Parsing using Clausal Information. In: NAACL-HLT 2010, Los Angeles, CA (2010)
Nivre, J., Hall, J., Kubler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The CoNLL 2007 Shared Task on Dependency Parsing. In: CoNLL Shared Task Session of EMNLP-CoNLL (2007)
Ambati, B.R., Husain, S., Nivre, J., Sangal, R.: On the Role of Morphosyntactic Features in Hindi Dependency Parsing. In: NAACL-HLT 2010 Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL 2010), Los Angeles, CA (2010)
Ambati, B.R., Gade, P., GSK, C.: Effect of Minimal Semantics on Dependency Parsing. In: RANLP 2009 Student Research Workshop (2009)
McDonald, R., Pereira, F., Ribarov, K., Hajic, J.: Non-projective dependency parsing using spanning tree algorithms. In: HLT/EMNLP, pp. 523–530 (2005)
McDonald, R., Crammer, K., Pereira, F.: On-line large-margin training of dependency parsers. In: ACL 2005, pp. 91–98 (2005)
Ambati, B.R., Gadde, P., Jindal, K.: Experiments in Indian Language Dependency Parsing. In: ICON 2009 NLP Tools Contest: Indian Language Dependency Parsing, pp. 32–37 (2009)
Husain, S., Mannem, P., Ambati, B., Gadde, P.: The ICON-2010 tools contest on Indian language dependency parsing. In: ICON 2010 Tools Contest on Indian Language Dependency Parsing, Kharagpur, India (2010)
Husain, S.: Dependency Parsers for Indian Languages. In: ICON 2009 NLP Tools Contest: Indian Language Dependency Parsing, Hyderabad, India (2009)
Bharati, A., Husain, S., Ambati, B., Jain, S., Sharma, D., Sangal, R.: Two Semantic features make all the difference in Parsing accuracy. In: International Conference on Natural Language Processing (2008)
Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In: Tenth Conference on Computational Natural Language Learning (CoNLL), pp. 149–164 (2006)
Ambati, B.R., Husain, S., Jain, S., Sharma, D.M., Sangal, R.: Two methods to incorporate local morphosyntactic features in Hindi dependency parsing. In: NAACL-HLT 2010 Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL 2010), Los Angeles, CA (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Begum, R., Jindal, K., Jain, A., Husain, S., Misra Sharma, D. (2011). Identification of Conjunct Verbs in Hindi and Its Effect on Parsing Accuracy. In: Gelbukh, A.F. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2011. Lecture Notes in Computer Science, vol 6608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19400-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-19400-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19399-6
Online ISBN: 978-3-642-19400-9
eBook Packages: Computer ScienceComputer Science (R0)