Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identification of Conjunct Verbs in Hindi and Its Effect on Parsing Accuracy

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6608))

Abstract

This paper introduces a work on identification of conjunct verbs in Hindi. The paper will first focus on investigating which noun-verb combination makes a conjunct verb in Hindi using a set of linguistic diagnostics. We will then see which of these diagnostics can be used as features in a MaxEnt based automatic identification tool. Finally we will use this tool to incorporate certain features in a graph based dependency parser and show an improvement over previous best Hindi parsing accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hook, P.E.: The Hindi compound verb: What it is and what it does? In: Singh, K.S. (ed.) Readings in Hindi-Urdu Linguistics. National Publishing House, Delhi (1974)

    Google Scholar 

  2. Mohanan, T.: Wordhood and Lexicality. NLLT 13, 75–134 (1995)

    Google Scholar 

  3. Alsina, A.: Complex Predicates. CSLI Publications, Stanford (1995)

    Google Scholar 

  4. Mohanan, T.: Arguments in Hindi. Center for the Study of Language and Information, Leland Stanford Junior University, United States (1994)

    Google Scholar 

  5. Butt, M.: Conscious Choice And Some Light Verbs In Urdu. In: Verma, M.K. (ed.) Manohar (1993)

    Google Scholar 

  6. Butt, M.: Complex Predicates Compendium, Tromso (May 2005)

    Google Scholar 

  7. Agnihotri, R.K.: Hindi, An Essential Grammar, pp. 121–126. Routledge, London (2007)

    Google Scholar 

  8. Bahl, K.C.: Studies in the Semantic Structure of Hindi. Motilal Banarasidass, Bihar (1974)

    Google Scholar 

  9. Bharati, A., Chaitanya, V., Sangal, R.: Natural Language Processing: A Paninian Perspective, pp. 65–106. Prentice Hall of India, New Delhi (1995)

    Google Scholar 

  10. Begum, R., Husain, S., Dhwaj, A., Sharma, D.M., Bai, L., Sangal, R.: Dependency Annotation Scheme for Indian Languages. In: The Third International Joint Conference on Natural Language Processing (IJCNLP), Hyderabad, India (2008)

    Google Scholar 

  11. Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D.M., Xia, F.: A Multi Representational and MultiLayered Treebank for Hindi/Urdu. In: The Third Linguistic Annotation Workshop (The LAW III) in Conjunction with ACL/IJCNLP, Singapore (2009)

    Google Scholar 

  12. Kellogg, S.H.R.: A Grammar of the Hindi Language. Routledge and Kegan Paul Ltd., London (1875)

    Google Scholar 

  13. Bailey, T.G.: Teach Yourself Urdu. In: Firth, J.R., Harley, A.H. (eds.), London (1956)

    Google Scholar 

  14. Guru, K.P.: Hindi Vyakarana. Kasi Nagari Pracarini Sabha, Kasi (1922)

    Google Scholar 

  15. Sharma, A.: A Basic Grammar of Modern Hindi. Government of India, Ministry of Education and Scientific Research, Delhi (1958)

    Google Scholar 

  16. Bahri, H.: Hindi Semantics. The Bharati Press, Allahabad (1959)

    Google Scholar 

  17. Bahl, K.C.: A Reference Grammar of Hindi. The University of Chicago, Chicago (1967)

    Google Scholar 

  18. Bhattacharyya, P., Chakrabarti, D., Sarma, V.M.: Complex predicates in Indian languages and wordnets. Language Resources and Evaluation 40(3-4), 331–355 (2006)

    Article  Google Scholar 

  19. Mukerjee, A., Soni, A., Raina, A.M.: Detecting Complex Predicates in using POS Projection across parallel Corpora Aligned Hindi sentence. In: Workshop on Multiword Expressions, Sydney, pp. 11–18 (2006)

    Google Scholar 

  20. Sinha, R.M.K.: Mining Complex Predicates In Hindi Using A Parallel Hindi-English Corpus. In: ACL International Joint Conference in Natural Language Processing, p. 40 (2009)

    Google Scholar 

  21. Venkatapathy, S., Joshi, A.: Relative Compositionality     of   Noun+Verb Multi-word Expressions in Hindi. In: ICON (2005)

    Google Scholar 

  22. Chakrabarti, D., Mandalia, H., Priya, R., Sarma, V., Bhattacharyya, P.: Hindi Compound Verbs and their Automatic Extraction. In: International Conference on Computational Linguistics, pp. 27–30 (2008)

    Google Scholar 

  23. Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D. thesis (1998)

    Google Scholar 

  24. Rosenfeld, R.: Adaptive Statistical Language Modeling: A Maximum Entropy Approach. Ph.D. thesis, Carnegie Mellon University (1994)

    Google Scholar 

  25. Chen, S.F., Rosenfeld, R.: A Gaussian prior for smoothing maximum entropy models. Technical Report CMUCS-99-108, Carnegie Mellon University (1999)

    Google Scholar 

  26. Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Machine Learning 34(1-3), 177–210 (1999)

    Article  MATH  Google Scholar 

  27. Ratnaparkhi, A., Reynar, J., Roukos, S.: A maximum entropy model for prepositional phrase attachment. In: ARPA Human Language Technology Workshop, pp. 250–255 (1994)

    Google Scholar 

  28. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Empirical Methods in Natural Language Conference (1996)

    Google Scholar 

  29. Nigam, K., Lafferty, J., McCallum, A.: Using Maximum Entropy for Text Classification. In: IJCAI 1999 Workshop on Machine Learning for Information Filtering, pp. 61–67 (1999)

    Google Scholar 

  30. Berger, A., Pietra, D.: A Maximum Entropy Approach to Natural Language Processing. Computational Linguistics, Vol 22, 39–71 (1996)

    Google Scholar 

  31. Bharati, A., Husain, S., Vijay, M., Deepak, K., Sharma, D.M., Sangal, R.: Constraint Based Hybrid Approach to Parsing Indian Languages. In: The 23rd Pacific Asia Conference on Language, Information and Computation (PACLIC 23), Hong Kong (2009)

    Google Scholar 

  32. Gadde, P., Jindal, K., Husain, S., Sharma, D.M., Sangal, R.: Improving Data Driven Dependency Parsing using Clausal Information. In: NAACL-HLT 2010, Los Angeles, CA (2010)

    Google Scholar 

  33. Nivre, J., Hall, J., Kubler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The CoNLL 2007 Shared Task on Dependency Parsing. In: CoNLL Shared Task Session of EMNLP-CoNLL (2007)

    Google Scholar 

  34. Ambati, B.R., Husain, S., Nivre, J., Sangal, R.: On the Role of Morphosyntactic Features in Hindi Dependency Parsing. In: NAACL-HLT 2010 Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL 2010), Los Angeles, CA (2010)

    Google Scholar 

  35. Ambati, B.R., Gade, P., GSK, C.: Effect of Minimal Semantics on Dependency Parsing. In: RANLP 2009 Student Research Workshop (2009)

    Google Scholar 

  36. McDonald, R., Pereira, F., Ribarov, K., Hajic, J.: Non-projective dependency parsing using spanning tree algorithms. In: HLT/EMNLP, pp. 523–530 (2005)

    Google Scholar 

  37. McDonald, R., Crammer, K., Pereira, F.: On-line large-margin training of dependency parsers. In: ACL 2005, pp. 91–98 (2005)

    Google Scholar 

  38. Ambati, B.R., Gadde, P., Jindal, K.: Experiments in Indian Language Dependency Parsing. In: ICON 2009 NLP Tools Contest: Indian Language Dependency Parsing, pp. 32–37 (2009)

    Google Scholar 

  39. Husain, S., Mannem, P., Ambati, B., Gadde, P.: The ICON-2010 tools contest on Indian language dependency parsing. In: ICON 2010 Tools Contest on Indian Language Dependency Parsing, Kharagpur, India (2010)

    Google Scholar 

  40. Husain, S.: Dependency Parsers for Indian Languages. In: ICON 2009 NLP Tools Contest: Indian Language Dependency Parsing, Hyderabad, India (2009)

    Google Scholar 

  41. Bharati, A., Husain, S., Ambati, B., Jain, S., Sharma, D., Sangal, R.: Two Semantic features make all the difference in Parsing accuracy. In: International Conference on Natural Language Processing (2008)

    Google Scholar 

  42. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In: Tenth Conference on Computational Natural Language Learning (CoNLL), pp. 149–164 (2006)

    Google Scholar 

  43. Ambati, B.R., Husain, S., Jain, S., Sharma, D.M., Sangal, R.: Two methods to incorporate local morphosyntactic features in Hindi dependency parsing. In: NAACL-HLT 2010 Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL 2010), Los Angeles, CA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Begum, R., Jindal, K., Jain, A., Husain, S., Misra Sharma, D. (2011). Identification of Conjunct Verbs in Hindi and Its Effect on Parsing Accuracy. In: Gelbukh, A.F. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2011. Lecture Notes in Computer Science, vol 6608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19400-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19400-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19399-6

  • Online ISBN: 978-3-642-19400-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics