Abstract
We present a novel method that, given a sequence of synchronized views of a human hand, recovers its 3D position, orientation and full articulation parameters. The adopted hand model is based on properly selected and assembled 3D geometric primitives. Hypothesized configurations/poses of the hand model are projected to different camera views and image features such as edge maps and hand silhouettes are computed. An objective function is then used to quantify the discrepancy between the predicted and the actual, observed features. The recovery of the 3D hand pose amounts to estimating the parameters that minimize this objective function which is performed using Particle Swarm Optimization. All the basic components of the method (feature extraction, objective function evaluation, optimization process) are inherently parallel. Thus, a GPU-based implementation achieves a speedup of two orders of magnitude over the case of CPU processing. Extensive experimental results demonstrate qualitatively and quantitatively that accurate 3D pose recovery of a hand can be achieved robustly at a rate that greatly outperforms the current state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104, 90–126 (2006)
Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. ACM Transactions on Graphics 28, 1 (2009)
Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. CVIU 108, 52–73 (2007)
Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR, vol. 2, p. 432 (2003)
Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: ICCV, pp. 378–385 (2001)
Wu, Y., Huang, T.S.: View-independent recognition of hand postures. In: CVPR, pp. 88–94 (2000)
Romero, J., Kjellstrom, H., Kragic, D.: Monocular real-time 3D articulated hand pose estimation. In: IEEE-RAS Int’l Conf. on Humanoid Robots, pp. 87–92 (2009)
Rehg, J.M., Kanade, T.: Visual tracking of high dof articulated structures: An application to human hand tracking. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 35–46. Springer, Heidelberg (1994)
Stenger, B., Mendonca, P., Cipolla, R.: Model-based 3D tracking of an articulated hand. In: CVPR, pp. II–310–II–315 (2001)
Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Visual hand tracking using nonparametric belief propagation. In: CVPR Workshop, pp. 189–189 (2004)
de la Gorce, M., Paragios, N., Fleet, D.: Model-based hand tracking with texture, shading and self-occlusions. In: CVPR, pp. 1–8 (2008)
John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. Image and Vision Computing 28, 1530–1547 (2010)
Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)
Argyros, A., Lourakis, M.: Real-time tracking of multiple skin-colored objects with a possibly moving camera. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 368–379. Springer, Heidelberg (2004)
Albrecht, I., Haber, J., Seidel, H.: Construction and animation of anatomically based human hand models. In: 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, p. 109 (2003)
Turkowski, K.: Transformations of surface normal vectors. Technical report, Tech. Rep. 22, Apple Computer (July 1990)
Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Morgan Kaufmann Publishers, San Francisco (2001)
Angeline, P.: Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)
White, B., Shaw, M.: Automatically tuning background subtraction parameters using particle swarm optimization. In: IEEE ICME, pp. 1826–1829 (2007)
Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)
Shaheen, M., Gall, J., Strzodka, R., Gool, L.V., Seidel, H.P.: A comparison of 3d model-based tracking approaches for human motion capture in uncontrolled environments. In: Workshop on Applications of Computer Vision, pp. 1–8 (2009)
Luo, Y., Duraiswami, R.: Canny edge detection on NVIDIA CUDA. In: CVPR 2008 Workshops, pp. 1–8 (2008)
Fischer, I., Gotsman, C.: Fast approximation of high-order Voronoi diagrams and distance transforms on the GPU. Journal of Graphics, GPU, & Game Tools 11, 39–60 (2006)
Pharr, M., Fernando, R.: Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oikonomidis, I., Kyriazis, N., Argyros, A.A. (2011). Markerless and Efficient 26-DOF Hand Pose Recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-19318-7_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19317-0
Online ISBN: 978-3-642-19318-7
eBook Packages: Computer ScienceComputer Science (R0)