Nothing Special   »   [go: up one dir, main page]

Skip to main content

Markerless and Efficient 26-DOF Hand Pose Recovery

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Included in the following conference series:

Abstract

We present a novel method that, given a sequence of synchronized views of a human hand, recovers its 3D position, orientation and full articulation parameters. The adopted hand model is based on properly selected and assembled 3D geometric primitives. Hypothesized configurations/poses of the hand model are projected to different camera views and image features such as edge maps and hand silhouettes are computed. An objective function is then used to quantify the discrepancy between the predicted and the actual, observed features. The recovery of the 3D hand pose amounts to estimating the parameters that minimize this objective function which is performed using Particle Swarm Optimization. All the basic components of the method (feature extraction, objective function evaluation, optimization process) are inherently parallel. Thus, a GPU-based implementation achieves a speedup of two orders of magnitude over the case of CPU processing. Extensive experimental results demonstrate qualitatively and quantitatively that accurate 3D pose recovery of a hand can be achieved robustly at a rate that greatly outperforms the current state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104, 90–126 (2006)

    Google Scholar 

  2. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. ACM Transactions on Graphics 28, 1 (2009)

    Google Scholar 

  3. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. CVIU 108, 52–73 (2007)

    Google Scholar 

  4. Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR, vol. 2, p. 432 (2003)

    Google Scholar 

  5. Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: ICCV, pp. 378–385 (2001)

    Google Scholar 

  6. Wu, Y., Huang, T.S.: View-independent recognition of hand postures. In: CVPR, pp. 88–94 (2000)

    Google Scholar 

  7. Romero, J., Kjellstrom, H., Kragic, D.: Monocular real-time 3D articulated hand pose estimation. In: IEEE-RAS Int’l Conf. on Humanoid Robots, pp. 87–92 (2009)

    Google Scholar 

  8. Rehg, J.M., Kanade, T.: Visual tracking of high dof articulated structures: An application to human hand tracking. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 35–46. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  9. Stenger, B., Mendonca, P., Cipolla, R.: Model-based 3D tracking of an articulated hand. In: CVPR, pp. II–310–II–315 (2001)

    Google Scholar 

  10. Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Visual hand tracking using nonparametric belief propagation. In: CVPR Workshop, pp. 189–189 (2004)

    Google Scholar 

  11. de la Gorce, M., Paragios, N., Fleet, D.: Model-based hand tracking with texture, shading and self-occlusions. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  12. John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. Image and Vision Computing 28, 1530–1547 (2010)

    Article  Google Scholar 

  13. Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)

    Article  Google Scholar 

  14. Argyros, A., Lourakis, M.: Real-time tracking of multiple skin-colored objects with a possibly moving camera. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 368–379. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Albrecht, I., Haber, J., Seidel, H.: Construction and animation of anatomically based human hand models. In: 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, p. 109 (2003)

    Google Scholar 

  16. Turkowski, K.: Transformations of surface normal vectors. Technical report, Tech. Rep. 22, Apple Computer (July 1990)

    Google Scholar 

  17. Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  18. Angeline, P.: Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. White, B., Shaw, M.: Automatically tuning background subtraction parameters using particle swarm optimization. In: IEEE ICME, pp. 1826–1829 (2007)

    Google Scholar 

  20. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  21. Shaheen, M., Gall, J., Strzodka, R., Gool, L.V., Seidel, H.P.: A comparison of 3d model-based tracking approaches for human motion capture in uncontrolled environments. In: Workshop on Applications of Computer Vision, pp. 1–8 (2009)

    Google Scholar 

  22. Luo, Y., Duraiswami, R.: Canny edge detection on NVIDIA CUDA. In: CVPR 2008 Workshops, pp. 1–8 (2008)

    Google Scholar 

  23. Fischer, I., Gotsman, C.: Fast approximation of high-order Voronoi diagrams and distance transforms on the GPU. Journal of Graphics, GPU, & Game Tools 11, 39–60 (2006)

    Article  Google Scholar 

  24. Pharr, M., Fernando, R.: Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oikonomidis, I., Kyriazis, N., Argyros, A.A. (2011). Markerless and Efficient 26-DOF Hand Pose Recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics