Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Learning for PLSA-Based Visual Recognition

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

Abstract

Probabilistic Latent Semantic Analysis (PLSA) is one of the latent topic models and it has been successfully applied to visual recognition tasks. However, PLSA models have been learned mainly in batch learning, which can not handle data that arrives sequentially. In this paper, we propose a novel on-line learning algorithm for learning the parameters of PLSA. Our contributions are two-fold: (i) an on-line learning algorithm that learns the parameters of a PLSA model from incoming data; (ii) a codebook adaptation algorithm that can capture the full characteristics of all the features during the learning. Experimental results demonstrate that the proposed algorithm can handle sequentially arriving data that batch PLSA learning cannot cope with, and its performance is comparable with that of the batch PLSA learning on visual recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofmann, T.: Unsupervised Learning by Probabilistic Latent Semantic Analysis. Machine Learning 42, 177–196 (2001)

    Article  MATH  Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and their location in images. In: ICCV (2005)

    Google Scholar 

  4. Bosch, A., Zisserman, A., Munoz, X.: Scene classification using a hybrid generative/discriminative approach. TPAMI 30, 712–727 (2008)

    Article  Google Scholar 

  5. Carlos Niebles, J., Wang, H., Li, F.F.: Unsupervsied Learning of Human Action Categories Using Spatial-Temporal Words. IJCV 42, 993–1022 (2008)

    Google Scholar 

  6. Savarese, S., DelPozo, A., Niebles, J., Fei-Fei, L.: Spatial-temporal correlations for unsupervised action classification. In: WMCV (2008)

    Google Scholar 

  7. Xu, J., Ye, G., Wang, Y., Herman, G., Zhang, B., Yang, J.: Incremental EM for Probabilistic Latent Semantic Analysis on Human Action Recognition. In: AVSS (2009)

    Google Scholar 

  8. Chou, T., Chen, M.: Using incremental PLSI for threshold-resilient online event analysis. IEEE Transactions on Knowledge and Data Engineering 20, 289 (2008)

    Article  Google Scholar 

  9. AlSumait, L., Barbará, D., Domeniconi, C.: Online LDA: Adaptive Topic Model for Mining Text Streams with Application on Topic Detection and Tracking. In: ICDM (2008)

    Google Scholar 

  10. Chien, J., Wu, M.: Adaptive Bayesian latent semantic analysis. IEEE Transactions on Audio, Speech, and Language Processing 16, 198–207 (2008)

    Article  Google Scholar 

  11. Hamilton, J.: A quasi-Bayesian approach to estimating parameters for mixtures of normal distributions. Journal of Business & Economic Statistics 9, 27–39 (1991)

    Google Scholar 

  12. Vailaya, A., Figueiredo, M., Jain, A., Zhang, H., Technol, A., Alto, P.: Image classification for content-based indexing. TIP 10, 117–130 (2001)

    MATH  Google Scholar 

  13. Wu, J., Rehg, J.: Where am I: Place instance and category recognition using spatial PACT. In: CVPR (2008)

    Google Scholar 

  14. Gupta, P., Arrabolu, S., Brown, M., Savarese, S.: Video Scene Categorization by 3D Hierarchical Histogram Matching. In: ICCV (2009)

    Google Scholar 

  15. Vogel, J., Schiele, B.: Natural scene retrieval based on a semantic modeling step. LNCS, pp. 207–215. Springer, Heidelberg (2004)

    Google Scholar 

  16. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: CVPR (2005)

    Google Scholar 

  17. Quattoni, A., Torralb, A.: Recognizing Indoor Scenes. In: CVPR (2009)

    Google Scholar 

  18. Li, L., Socher, R., Fei-Fei, L.: Towards Total Scene Understanding Classification, Annotation and Segmentation in an Automatic Framework. In: CVPR (2009)

    Google Scholar 

  19. Yilmaz, A., Shah, M.: Recognizing Human Actions in Videos Acquired by Uncalibrated Moving Cameras. In: ICCV (2005)

    Google Scholar 

  20. Little, J., Boyd, J.: Recognizing people by their gait: the shape of motion. Journal of Computer Vision Research 1, 1–32 (1998)

    Google Scholar 

  21. Ikizler, N., Forsyth, D.: Searching Video for Complex Activities with Finite State Models. In: ICCV, vol. 3 (2007)

    Google Scholar 

  22. Pruteanu-Malinici, I., Carin, L.: Infinite hidden markov models for unusual-event detection in video. TIP 17, 811–822 (2008)

    MathSciNet  Google Scholar 

  23. Wang, Y., Mori, G.: Max-margin hidden conditional random fields for human action recognition. In: CVPR (2009)

    Google Scholar 

  24. Dollar, P., Vincent, R., Garrison, C.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS (2005)

    Google Scholar 

  25. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: ICCV, vol. 1 (2005)

    Google Scholar 

  26. Yeffet, L., Wolf, L.: Local Trinary Patterns for Human Action Recognition. In: ICCV (2009)

    Google Scholar 

  27. Gilbert, A., Illingworth, J., Bowden, R.: Fast Realistic Multi-Action Recognition using Mined Dense Spatio-temporal. In: ICCV (2009)

    Google Scholar 

  28. Dempster, A., Laird, N., Rubin, D., et al.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (2002)

    Google Scholar 

  30. Sato, M.: Convergence of on-line EM algorithm. ICONIP 1, 476–481 (2000)

    Google Scholar 

  31. Fergus, R., Fei-Fei, L., Torralba, A.: ICCV 2005 short course on Object Recognition (2005), http://people.csail.mit.edu/fergus/iccv2005/bagwords.html

  32. Google: Developer’s Guide to Picasa Web Albums Data API (2009), http://code.google.com/apis/picasaweb/overview.html

  33. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)

    Article  Google Scholar 

  34. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42, 145–175 (2001)

    Article  MATH  Google Scholar 

  35. Horster, E., Lienhart, R., Slaney, M.: Continuous visual vocabulary modelsfor plsa-based scene recognition. In: CIVR (2008)

    Google Scholar 

  36. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local svm approach. In: CVPR (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, J., Ye, G., Wang, Y., Wang, W., Yang, J. (2011). Online Learning for PLSA-Based Visual Recognition. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics