Nothing Special   »   [go: up one dir, main page]

Skip to main content

Salient Region Detection by Jointly Modeling Distinctness and Redundancy of Image Content

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

  • 3913 Accesses

Abstract

Salient region detection in images is a challenging task, despite its usefulness in many applications. By modeling an image as a collection of clusters, we design a unified clustering framework for salient region detection in this paper. In contrast to existing methods, this framework not only models content distinctness from the intrinsic properties of clusters, but also models content redundancy from the removed content during the retargeting process. The cluster saliency is initialized from both distinctness and redundancy and then propagated among different clusters by applying a clustering assumption between clusters and their saliency. The novel saliency propagation improves the robustness to clustering parameters as well as retargeting errors. The power of the proposed method is carefully verified on a standard dataset of 5000 real images with rectangle annotations as well as a subset with accurate contour annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, X.J., Ma, W.Y., Li, X.: Data-Driven Approach for Bridging the Cognitive Gap in Image Retrieval. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo., Taipei, Taiwan, vol. 3, pp. 2231–2234 (2004)

    Google Scholar 

  2. Fu, H., Chi, Z., Feng, D.: Attention-driven Image Interpretation with Application to Image Retrieval. Pattern Recognition 39, 1604–1621 (2006)

    Article  MATH  Google Scholar 

  3. Chen, L.Q., Xie, X., Fan, X., Ma, W.Y., Zhang, H.J., Zhou, H.Q.: A Visual Attention Model for Adapting Images on Small Displays. ACM Multimedia Systems Journal (9) 353–364

    Google Scholar 

  4. Xie, X., Liu, H., Ma, W.Y., Zhang, H.J.: Browsing Large Pictures under Limited Display Sizes. IEEE Transaction on Multimedia 8, 707–715 (2006)

    Article  Google Scholar 

  5. Avidan, S., Shamir, A.: Seam Carving for Content-Aware Image Resizing. ACM Transactions on Graphics (Proceedings SIGGRAPH 2007) 26 (2007)

    Google Scholar 

  6. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)

    Article  Google Scholar 

  7. Ma, Y.F., Zhang, H.J.: Contrast-based Image Attention Analysis by Using Fuzzy Growing. In: Proceedings of the Eleventh ACM International Conference on Multimedia, New York, NY, USA, pp. 228–241

    Google Scholar 

  8. Kadir, T., Brady, M.: Scale, Saliency and Image Description. International Journal of Computer Vision 45, 83–105 (2001)

    Article  MATH  Google Scholar 

  9. Bruce, N., Tsotsos, J.: Saliency Based on Information Maximization. In: Advances in Neural Information Processing Systems 18

    Google Scholar 

  10. Hou, X., Zhang, L.: Dynamic Visual Attention: Searching for Coding Length Increments. In: Advances in Neural Information Processing Systems 21

    Google Scholar 

  11. Hou, X., Zhang, L.: Saliency Detection: A Spectral Residual Approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA (2007)

    Google Scholar 

  12. Achanta, R., Estrada, S.H.F., Susstrunk, S.: Frequency-tuned Salient Region Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Florida, USA (2009)

    Google Scholar 

  13. Achanta, R., Susstrunk, S.: Saliency Detection for Content-aware Image Resizing. In: Proceedings of the IEEE Conference on Image Processing, Cairo, Egypt (2009)

    Google Scholar 

  14. Hu, Y., Rajan, D., Chia, L.T.: Robust Subspace Analysis for Detecting Visual Attention Regions in Images. In: Proceedings of the Thirteenth ACM International Conference on Multimedia, Singapore, pp. 716–724

    Google Scholar 

  15. Harel, J., Koch, C., Perona, P.: Graph-Based Visual Saliency. In: Advances in Neural Information Processing Systems 19

    Google Scholar 

  16. Gopalakrishnan, V., Hu, Y., Rajan, D.: Salient Region Detection by Modeling Distributions of Color and Orientation. IEEE Transaction on Multimedia 11, 892–905 (2009)

    Article  Google Scholar 

  17. Torralba, A., Oliva, A., Castelhano, M.S., Henderson, J.M.: Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychological Review 113, 766–786 (2006)

    Article  Google Scholar 

  18. Pritch, Y., Venaki, E.K., Peleg, S.: Shift-Map Image Editing. In: Proceedings of the IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  19. Wang, Y.S., Tai, C.L., Sorkine, O., Lee, T.Y.: Optimized Scale-and-Stretch for Image Resizing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH ASIA 2008) 27 (December 2008)

    Google Scholar 

  20. Liu, T., Sun, J., Zheng, N.N., Tang, X., Shum, H.Y.: Learning to Detect A Salient Object. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA (2007)

    Google Scholar 

  21. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via The EM Algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Wang, Z., Li, B.: A Two-stage Approach to Saliency detection. In: ICASSP, Las Vegas, Nevada, U.S.A (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, Y., Ren, Z., Rajan, D., Chia, LT. (2011). Salient Region Detection by Jointly Modeling Distinctness and Redundancy of Image Content. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics