Nothing Special   »   [go: up one dir, main page]

Skip to main content

Object Class Segmentation Using Reliable Regions

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

  • 3907 Accesses

Abstract

Image segmentation is increasingly used for object recognition. The advantages of segments are numerous: a natural spatial support to compute features, reduction in the number of hypothesis to test, region shape itself can be a useful feature, etc. Since segmentation is brittle, a popular remedy is to integrate results over multiple segmentations of the scene. In previous work, usually all the regions in multiple segmentations are used. However, a typical segmentation algorithm often produces generic regions lacking discriminating features. In this work we explore the idea of finding and using only the regions that are reliable for detection. The main step is to cluster feature vectors extracted from regions and deem as unreliable any clusters that belong to different classes but have a significant overlap. We use a simple nearest neighbor classifier for object class segmentation and show that discarding unreliable regions results in a significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rowley, H., Baluja, S., Kanade, T.: Human face detection in visual scenes. In: Advances in Neural Information Processing Systems, pp. 875–881 (1996)

    Google Scholar 

  2. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference on Computer Vision and Pattern Recognition, p. 886 (2005)

    Google Scholar 

  4. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 36–51 (2008)

    Article  Google Scholar 

  5. Lampert, C., Blaschko, M., Hofmann, T., Zurich, S.: Beyond sliding windows: Object localization by efficient subwindow search. In: Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  6. Russell, B., Efros, A., Sivic, J., Freeman, W., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1605–1614 (2006)

    Google Scholar 

  7. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: European Conference on Computer Vision, pp. 1–15 (2006)

    Google Scholar 

  8. Verbeek, J., Triggs, B., Inria, M.: Region classification with markov field aspect models. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  9. Verbeek, J., Triggs, B.: Scene segmentation with conditional random fields learned from partially labeled images. In: Proc. NIPS (2008)

    Google Scholar 

  10. He, X., Zemel, R.: Learning hybrid models for image annotation with partially labeled data. In: Advances in Neural Information Processing Systems, NIPS (2008)

    Google Scholar 

  11. Schroff, F., Criminisi, A., Zisserman, A.: Object class segmentation using random forests (2008)

    Google Scholar 

  12. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. International Journal of Computer Vision 80, 300–316 (2008)

    Article  Google Scholar 

  13. Pantofaru, C., Schmid, C., Hebert, M.: Object recognition by integrating multiple image segmentations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 481–494. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Gu, C., Lim, J., Arbelaez, P., Malik, J.: Recognition Using Regions. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proc. CVPR, pp. 1030–1037 (2009)

    Google Scholar 

  15. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: IEEE International Conference on Computer Vision, pp. 670–677 (2009)

    Google Scholar 

  16. Malisiewicz, T., Efros, A.: Improving spatial support for objects via multiple segmentations. In: British Machine Vision Conference (BMVC), vol. 2, BMVC (2007)

    Google Scholar 

  17. Todorovic, S., Ahuja, N.: Learning subcategory relevances for category recognition. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  18. Hoiem, D., Efros, A., Hebert, M.: Recovering surface layout from an image. International Journal of Computer Vision 75, 151–172 (2007)

    Article  MATH  Google Scholar 

  19. Galleguillos, C., Babenko, B., Rabinovich, A., Belongie, S.: Weakly supervised object localization with stable segmentations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 193–207. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. International Journal of Computer Vision 59, 167–181 (2004)

    Article  Google Scholar 

  21. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 603–619 (2002)

    Google Scholar 

  22. Kira, K., Rendell, L.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning Table of Contents, pp. 249–256. Morgan Kaufmann Publishers Inc., San Francisco (1992)

    Google Scholar 

  23. Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1222–1239 (2001)

    Article  Google Scholar 

  24. Barnard, K., Duygulu, P., Guru, R., Gabbur, P., Forsyth, D.: The effects of segmentation and feature choice in a translation model of object recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 675–682 (2003)

    Google Scholar 

  25. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 530–549 (2004)

    Google Scholar 

  26. Levi, K., Weiss, Y.: Learning object detection from a small number of examples: The importance of good features. In: Conference on Computer Vision and Pattern Recognition, vol. 2 (2004)

    Google Scholar 

  27. Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimensional Data, 25–71 (2006)

    Google Scholar 

  28. Hartigan, J.: Clustering algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  29. Fisher, R.: The use of multiple measures in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  30. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1124–1137 (2004)

    Google Scholar 

  31. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 147–159 (2004)

    Article  MATH  Google Scholar 

  32. Shotton, J., Winn, J., Rother, C., Criminisi, A.: The MSRC 21-class object recognition database (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vakili, V., Veksler, O. (2011). Object Class Segmentation Using Reliable Regions. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics