Nothing Special   »   [go: up one dir, main page]

Skip to main content

Synthesizing Solutions to the Leader Election Problem Using Model Checking and Genetic Programming

  • Conference paper
Hardware and Software: Verification and Testing (HVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6405))

Included in the following conference series:

Abstract

In recent papers [13,14,15], we demonstrated a methodology for developing correct-by-design programs from temporal logic specification using genetic programming. Model checking the temporal specification is used to calculate the fitness function for candidate solutions, which directs the search from initial randomly generated programs towards correct solutions. This method was successfully demonstrated by constructing solutions for the mutual exclusion problem; later, we also imposed some realistic constraints on access to variables. While the results were encouraging for using the genetic synthesis method, the mutual exclusion example includes some limitations that fit well with the constraints of model checking: the goal was finding a fixed finite state program, and its state space was moderately small. Here, in a more realistic setting, we challenge the problem of synthesizing a solution for the well known “leader election” problem; under this problem, a circular, unidirectional network with message passing is seeking the identity of a process with a maximal value. This identity, once found, can be used for synchronization, breaking symmetry and other network applications. The problem is challenging since it is parametric, and the state space of the solutions grows up exponentially with the number of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)

    Article  Google Scholar 

  2. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algorithms. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 136–150. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configurations of processes. ACM Commun. 22(5), 281–283 (1979)

    Article  MATH  Google Scholar 

  4. Chellapilla, K.: Evolving computer programs without subtree crossover. IEEE Trans. Evolutionary Computation 1(3), 209–216 (1997)

    Article  Google Scholar 

  5. Dolev, D., Klawe, M.M., Rodeh, M.: An O ( n logn ) unidirectional distributed algorithm for extrema finding in a circle. J. Algorithms 3(3), 245–260 (1982)

    Article  MATH  Google Scholar 

  6. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput. Sci. 14(4), 527–550 (2003)

    Article  MATH  Google Scholar 

  8. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verification methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 438–449. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: The Spin Verification System, pp. 23–32. American Mathematical Society, Providence (1996)

    Google Scholar 

  10. Holzmann, G.J.: The SPIN Model Checker. Pearson Education, London (2003)

    Google Scholar 

  11. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE, pp. 197–211 (1994)

    Google Scholar 

  12. Johnson, C.G.: Genetic programming with fitness based on model checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Katz, G., Peled, D.: Genetic programming and model checking: Synthesizing new mutual exclusion algorithms. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Katz, G., Peled, D.: Model checking driven heuristic search for correct programs. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 122–131. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Katz, S., Peled, D.: Defining conditional independence using collapses. Theor. Comput. Sci. 101(2), 337–359 (1992)

    Article  MATH  Google Scholar 

  17. Kinnear Jr., K.E.: Evolving a sort: Lessons in genetic programming. In: IJCNN, vol. 2, pp. 881–888 (1993)

    Google Scholar 

  18. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  19. Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. In: PODC, pp. 239–247 (1989)

    Google Scholar 

  20. Lamport, L.: A theorem on atomicity in distributed algorithms. Distributed Computing 4, 59–68 (1990)

    Article  MATH  Google Scholar 

  21. Le Lann, G.: Distributed systems - towards a formal approach. In: IFIP Congress, pp. 155–160 (1977)

    Google Scholar 

  22. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear specification. In: POPL, pp. 97–107 (1985)

    Google Scholar 

  23. Niebert, P., Peled, D., Pnueli, A.: Discriminative model checking. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 504–516. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Oppen, D.C.: A \(2^{2^{2^{pn}}}\) upper bound on the complexity of presburger arithmetic. J. Comput. Syst. Sci. 16(3), 323–332 (1978)

    Article  MATH  Google Scholar 

  25. Overman, W.T., Crocker, S.D.: Verification of concurrent systems: Function and timing. In: PSTV, pp. 401–409 (1982)

    Google Scholar 

  26. Peterson, G.L.: An O(n log n) unidirectional algorithm for the circular extrema problem. ACM Trans. Program. Lang. Syst. 4(4), 758–762 (1982)

    Article  MATH  Google Scholar 

  27. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)

    Google Scholar 

  28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190 (1989)

    Google Scholar 

  29. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)

    Article  MATH  Google Scholar 

  30. Suzuki, I.: Proving properties of a ring of finite state systems. Inf. Process. Lett. 28(4), 213–314 (1988)

    Article  MATH  Google Scholar 

  31. Vardi, M.Y., Wolper, P.: Automata theoretic techniques for modal logics of programs. In: STOC, pp. 446–456 (1984)

    Google Scholar 

  32. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with network invariants. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katz, G., Peled, D. (2011). Synthesizing Solutions to the Leader Election Problem Using Model Checking and Genetic Programming. In: Namjoshi, K., Zeller, A., Ziv, A. (eds) Hardware and Software: Verification and Testing. HVC 2009. Lecture Notes in Computer Science, vol 6405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19237-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19237-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19236-4

  • Online ISBN: 978-3-642-19237-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics