Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Complexity Status of Problems Related to Sparsest Cuts

  • Conference paper
Combinatorial Algorithms (IWOCA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6460))

Included in the following conference series:

  • 813 Accesses

Abstract

Given an undirected graph G = (V,E) with a capacity function \(w : E \longrightarrow \mathbb{Z}^+\) on the edges, the sparsest cut problem is to find a vertex subset S ⊂ V minimizing ∑  e ∈ E(S,V ∖ S) w(e)/(|S||V ∖ S|). This problem is NP-hard. The proof can be found in [16]. In the case of unit capacities (i. e. if w(e) = 1 for every e ∈ E) the problem is to minimize |E(S,V ∖ S)|/(|S||V ∖ S|) over all subsets S ⊂ V. While this variant of the sparsest cut problem is often assumed to be NP-hard, this note contains the first proof of this fact. We also prove that the problem is polynomially solvable for graphs of bounded treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Journal of Machine Learning 75, 245–248 (2009)

    Article  Google Scholar 

  2. Aloise, D., Hansen, P.: On the complexity of minimum sum-of-squares clustering. Cahiers du GERAD, G–2007–50 (2007), http://www.gerad.ca

  3. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. In: FOCS, pp. 329–337 (2007)

    Google Scholar 

  4. Arora, S., Hazan, E., Kale, S.: \(O(\sqrt{\log n})\) Approximation to SPARSEST CUT in \(\tilde{O}(n^2)\) Time. SIAM J. Comput. 39(5), 1748–1771 (2010)

    Article  MATH  Google Scholar 

  5. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. In: STOC, pp. 222–231 (2004)

    Google Scholar 

  6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  Google Scholar 

  7. Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Bonsma, P.: Sparsest cuts and concurrent flows in product graphs. Discrete Applied Mathematics 136(2-3), 173–182 (2004)

    Article  MATH  Google Scholar 

  9. Bonsma, P.: Linear time algorithms for finding sparsest cuts in various graph classes. In: CS 2006, Prague. Electronic Notes in Discrete Mathematics, vol. 28, pp. 265–272 (2007)

    Google Scholar 

  10. Chlamtac, E., Krauthgamer, R., Raghavendra, P.: Approximating sparsest cuts in graphs of bounded treewidth. arXiv:1006.3970v2 [cs.Ds] (June 23, 2010)

    Google Scholar 

  11. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  12. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Journal of Machine Learning 56, 9–33 (2004)

    Article  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some Simplified NP-Complete Graph Problems. Theoretical Computer Science 1, 237–267 (1976)

    Article  MATH  Google Scholar 

  15. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

    Article  MATH  Google Scholar 

  16. Matula, D.W., Shahrokhi, F.: Sparsest cuts and bottlenecks in graphs. Discrete Applied Mathematics 27, 113–123 (1990)

    Article  MATH  Google Scholar 

  17. Moret, B., Shapiro, H.: Algorithms from P to NP. Benjamin/Cummings (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonsma, P., Broersma, H., Patel, V., Pyatkin, A. (2011). The Complexity Status of Problems Related to Sparsest Cuts. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19222-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19221-0

  • Online ISBN: 978-3-642-19222-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics