Abstract
One potential advantage of the application of superconducting materials in electrical machines is the possibility to build lighter and compact devices by removing iron. These machines find applications, e.g., in systems where cryogenics is already available, or in naturally cryogenic environments. The design of motors with high temperature superconductors (HTS) presents issues unconsidered in classical machines, besides considerations on cryogenics, such as HTS brittleness or mechanical restrictions. Moreover, HTS’ electromagnetic properties also degrade due to flux density components, which arise if there is no iron to guide magnetic flux. Several aspects must thus be considered in the design stage, as applications may turn less attractive or even unfeasible. In this paper these issues are detailed, and a numerical methodology for the design of an all superconducting (without iron or conventional conductors) linear synchronous motor is presented.
Chapter PDF
Similar content being viewed by others
References
Lee, P.J. (ed.): Engineering Superconductivity, pp. 260–280. Wiley-IEEE Press (2001)
Maguire, J.F., Yuan, J.: Status of high temperature superconductor cable and fault current limiter projects at American Superconductor. Physica C 469(15-20), 874–880 (2009)
Reis, C.T., Mehta, S.P., McConnell, B.W., Jones, R.H.: Development of High Temperature Superconducting Power Transformers. In: Power Engineering Society Winter Meeting 2001, pp. 432–437. IEEE, Ohio (2001)
Paul, W., Lakner, M., Rhyner, J., Unternährer, P., Baumann, T., et al.: Test of 1.2 MVA high-Tc superconducting fault current limiter. Superc. Sci. Tech. 10(12), 914–918 (1997)
Morandi, A., Fabbri, M., Ribani, P.L.: Design of a Superconducting Saddle Magnet for DC Induction Heating of Aluminum Billets. IEEE Trans. Appl. Superc. 18(2), 816–819 (2008)
Ryan, R.E., Underwood, L.W., McKellip, R., Brannon, D.P., Russel, K.J.: Exploiting Lunar Natural and Augmented Thermal Environments for Exploration and Research. In: 39th Lunar and Planetary Science Conference, Texas (2008)
Superczynski, M.J., Waltman, D.J.: Homopolar Motor with High Temperature Superconductor Field Windings. IEEE Trans. Appl. Superc. 7(2), 513–518 (1997)
Frank, M., van Hasselt, P., Kummeth, P., Massek, P., Nick, W., et al.: High-Temperature Superconducting Rotating Machines for Ship Applications. IEEE Trans. Appl. Superc. 16(2), 1465–1468 (2006)
Buck, J., Hartman, B., Ricket, R., Gamble, B., MacDonald, T., Snitchler, G.: Factory Testing of a 36.5 MW High Temperature Superconducting Propulsion Motor. In: Fuel Tank to Target: Building the Electric Fighting Ship at American Society of Naval Engineers Day 2007, Arlington (2007)
Oswald, B., Best, K.-J., Setzer, M., Soll, M., Gawalek, W., et al.: Reluctance Motors with Bulk HTS Material. Superc. Sci. Tech. 18, 24–29 (2005)
Kovalev, L.K., Ilushin, K.V., Penkin, V.T., Kovalev, K.L., Koneev, S.M.-A., et al.: Hysteresis and Reluctance Electric Machines with Bulk HTS Elements. Recent Results and Future Development. Superc. Sci. Tech. 13(5), 498–502 (2002)
Kim, W.-S., Jung, S.-Y., Choi, H.-Y., Jung, H.-K., Kim, J.H., Hahn, S.-Y.: Development of a Superconducting Linear Synchronous Motor. IEEE Trans. Appl. Superc. 12(1), 842–845 (2002)
Sato, A., Ueda, H., Ishiyama, A.: Operational Characteristic of Linear Synchronous Actuator with Field-Cooled HTS Bulk Secondary. IEEE Trans. Appl. Superc. 15(2), 2234–2237 (2005)
Say, M.G.: The Performance and Design of Alternating Current Machines: Transformers, Three-Phase Induction Motors and Synchronous Machines, 3rd edn. CBS Publishers & Distributers, New Delhi (1983)
Vajda, I., Szalay, A., Gobl, N., Meerovich, V., Sokolovsky, V.: Requirements for the industrial application of superconducting rotating electrical machines. IEEE Trans. Appl. Superc. 9(2), 1225–1228 (1999)
Pina, J.M., Ventim Neves, M., McCulloch, M.D., Rodrigues, A.L.: Design of a linear synchronous motor with high temperature superconductor materials in the armature and in the field excitacion system. J. Phys: Conf. Series, 43(1), 804–808 (2006)
Pina, J.M., Ventim Neves, M., Rodrigues, A.L.: Case Study in the Design of HTS Machines: an All Superconducting Linear Synchronous Motor. In: International Conference on Power Engineering, Energy and Electrical Drives, POWERENG 2007, Setúbal, pp. 185–190 (2007)
Pina, J., Gonçalves, A., Pereira, P., Álvarez, A., Ventim Neves, M., Rodrigues, A.: A test rig for thrust force measurement of an all HTS linear synchronous motor. J. Phys: Conf. Series, 97(1), 12220 (2008)
Fukai, H., Tomita, M., Murakami, M., Nagatomo, T.: Numerical simulation of trapped magnetic field for bulk superconductor. Physica C 357-360, Part 1, 774–776 (2001)
Bean, C.P.: Magnetization of High-Field Superconductors. Rev. Mod. Phys. 36, 31–39 (1964)
Aydıner, A., Yanmaz, E.: Numerical calculation of trapped magnetic field for square and cylindrical superconductors. Superc. Sci. Tech. 18(7), 1010–1015 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 IFIP International Federation for Information Processing
About this paper
Cite this paper
Pina, J.M., Neves, M.V., Álvarez, A., Rodrigues, A.L. (2011). Numerical Design Methodology for an All Superconducting Linear Synchronous Motor. In: Camarinha-Matos, L.M. (eds) Technological Innovation for Sustainability. DoCEIS 2011. IFIP Advances in Information and Communication Technology, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19170-1_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-19170-1_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19169-5
Online ISBN: 978-3-642-19170-1
eBook Packages: Computer ScienceComputer Science (R0)