Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximation Algorithms for Minimum Chain Vertex Deletion

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6552))

Included in the following conference series:

  • 1280 Accesses

Abstract

A bipartite graph G = (A ∪ B, E) is called a chain graph if there exists an ordering \(\rho=<\!v_1, v_2, \ldots v_n\!>\) of the vertices in A = {v 1,...,v n } such that N(v 1) ⊆ N(v 2) ... ⊆ N(v n ). Here N(v) denotes the set of neighbors of the vertex v in G. We call the vertex-deletion problem corresponding to the class of chain graphs as the Minimum Chain Vertex Deletion problem and the induced subgraph problem corresponding to chain graphs as the Maximum Induced Chain Subgraph problem. A weighted version of these problems is obtained by assigning positive weights on vertices and asking for a minimum weight deletion set to get into the class of chain graphs or asking for maximum weight induced chain subgraph. Using a rounding technique we show that the weighted version of Minimum Chain Vertex Deletion, has a factor 2 approximation algorithm on bipartite graphs. We also give a factor 3/2 approximation algorithm for a weighted version of Maximum Induced Chain Subgraph on bipartite graphs. We also show that both these problems are APX-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Lund, C.: Hardness of Approximations. In: Approximation Algorithms for NP-hard Problems, Dorit Hochbaum. PWS Publishing (1996)

    Google Scholar 

  2. Bafna, V., Berman, P., Fujito, T.: A 2-Approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feder, T., Mannila, H., Terzi, E.: Approximating the Minimum Chain Completion Problem. Information Processing letters 109, 980–985 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Khot, S., Regev, O.: Vertex Cover Might be Hard to Approximate to Within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. the ACM 41, 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for the minimum fill-in problem. SIAM Jr. Computing 30(4), 1067–1079 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Papadimitriou, C.H., Yannakakis, M.: Optimization, Approximation and Complexity Classes. Jr. Comput. System Sci. 43, 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  12. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM Journal of Computing 10(2), 310–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, M., Mishra, S., Devi, N.S., Saurabh, S. (2011). Approximation Algorithms for Minimum Chain Vertex Deletion. In: Katoh, N., Kumar, A. (eds) WALCOM: Algorithms and Computation. WALCOM 2011. Lecture Notes in Computer Science, vol 6552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19094-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19094-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19093-3

  • Online ISBN: 978-3-642-19094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics