Abstract
We consider the b-adic diaphony as a tool to measure the uniform distribution of sequences, as well as to investigate pseudo-random properties of sequences. The study of pseudo-random properties of uniformly distributed nets is extremely important for quasi-Monte Carlo integration. It is known that the error of the quasi-Monte Carlo integration depends on the distribution of the points of the net. On the other hand, the b-adic diaphony gives information about the points distribution of the net.
Several particular constructions of sequences (x i ) are considered. The b-adic diaphony of the two dimensional nets {y i = (x i , x i + 1)} is calculated numerically. The numerical results show that if the two dimensional net {y i } is uniformly distributed and the sequence (x i ) has good pseudo-random properties, then the value of the b-adic diaphony decreases with the increase of the number of the points. The analysis of the results shows a direct relation between pseudo-randomness of the points of the constructed sequences and nets and the b-adic diaphony as well as the discrepancy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blažeková, O., Strauch, O.: Pseudo-randomness of quadratic generators. Uniform Distribution Theory 2(2), 105–120 (2007)
Dimov, I., Atanassov, E.: Exact Error Estimates and Optimal Randomized Algorithms for Integration. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 131–139. Springer, Heidelberg (2007)
Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. LNM, vol. 1651. Springer, Heidelberg (1997)
Eichenauer-Herrmann, J., Niederreiter, H.: On the discrepancy of quadratic congruential pseudorandom numbers. J. Comput. Appl. Math. 34(2), 243–249 (1991)
Eichenauer-Herrmann, J., Niederreiter, H.: An improved upper bound for the discrepancy of quadratic congruential pseudorandom numbers. Acta Arithmetica 69(2), 193–198 (1995)
Grozdanov, V., Stoilova, S.: The b −adic diaphony. Rendiconti di Matematica 22, 203–221 (2002)
Knuth, D.E.: Seminumerical algorithms, 2nd edn. The art of computer programming, vol. 2. Addison Wesley, Reading (1981)
Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. John Wiley, New York (1974)
L’Ecuyer, P., Lemieux, C.: Recent Advances in Randomized Quasi-Monte Carlo Methods. In: Dror, M., L’Ecuyer, P., Szidarovszki, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic Publishers, Dordrecht (2002)
Lemieux, C., L’Ecuyer, P.: Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation. SIAM Journal on Scientific Computing 24(5), 1768–1789 (2003)
Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)
Niederreiter, H., Shparlinski, I.E.: On the distribution of inversive congruential pseudorandom numbers in parts of the period. Mathematics of Computation 70(236), 1569–1574 (2000)
Niederreiter, H., Shparlinski, I.E.: Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus. Acta Arithmetica XCII(1), 89–98 (2000)
Strauch, O., Porubský, Š.: Distribution of Sequences: A Sampler, Peter Lang, Frankfurt am Main (2005)
Weil, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lirkov, I., Stoilova, S. (2011). The b-adic Diaphony as a Tool to Study Pseudo-randomness of Nets. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, vol 6046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18466-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-18466-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18465-9
Online ISBN: 978-3-642-18466-6
eBook Packages: Computer ScienceComputer Science (R0)