Abstract
This work is devoted to error estimates for the discretization of parabolic equations on general nonconforming spatial meshes in several space dimensions. These meshes have been recently used to approximate stationary anisotropic heterogeneous diffusion equations and nonlinear equations. We present an implicit time discretization scheme based on an orthogonal projection of the exact initial value. We prove that, when the discrete flux is calculated using a stabilized discrete gradient, the convergence order is \(h_{\mathcal{D}}+k\), where \(h_{\mathcal{D}}\) (resp. k) is the mesh size of the spatial (resp. time) discretization. This estimate is valid for discrete norms \({\mathbb{L}}^\infty(0,T;H^1_0(\Omega))\) and \({\mathcal W}^{1,\infty}(0,T;L^2(\Omega))\) under the regularity assumption \(u\in {\mathcal{C}}^2([0,T];{\mathcal{C}}^2(\overline{\Omega}))\) for the exact solution u. These error estimates are useful because they allow to obtain approximations to the exact solution and its first derivatives of order \(h_{\mathcal{D}}+k\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bradji, A.: Some simples error estimates for finite volume approximation of parabolic equations. Comptes Rendus de l’Académie de Sciences, Paris 346(9-10), 571–574 (2008)
Bradji, A., Fuhrmann, J.: Some error estimates in finite volume method for parabolic equations. In: Eymard, R., Hérard, J.-M. (eds.) Finite Volumes for Complex Applications V, Proceedings of the 5th International Symposium on Finite Volume for Complex Applications, pp. 233–240. Wiley, Chichester (2008)
Bradji, A., Fuhrmann, J.: Error estimates for fully and semi-discretization schemes on general nonconforming meshes of linear parabolic equations (in progress)
Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50, 38–53 (2010)
Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Americain Mathematical Society, Providence (1998)
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis. In: Ciarlet, P.G., Lions, J.L. (eds.), vol. VII, pp. 723–1020 (2000)
Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. (Advance Access published on June 16, 2009), doi:10.1093/imanum/drn084
Feistauer, M., Felcman, J., Straskraba, I.: Mathematical and Computational Methods for Compressible Flow. Oxford Science Publications, Oxford (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bradji, A., Fuhrmann, J. (2011). Some Error Estimates for the Discretization of Parabolic Equations on General Multidimensional Nonconforming Spatial Meshes. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, vol 6046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18466-6_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-18466-6_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18465-9
Online ISBN: 978-3-642-18466-6
eBook Packages: Computer ScienceComputer Science (R0)