Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some Error Estimates for the Discretization of Parabolic Equations on General Multidimensional Nonconforming Spatial Meshes

  • Conference paper
Numerical Methods and Applications (NMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6046))

Included in the following conference series:

Abstract

This work is devoted to error estimates for the discretization of parabolic equations on general nonconforming spatial meshes in several space dimensions. These meshes have been recently used to approximate stationary anisotropic heterogeneous diffusion equations and nonlinear equations. We present an implicit time discretization scheme based on an orthogonal projection of the exact initial value. We prove that, when the discrete flux is calculated using a stabilized discrete gradient, the convergence order is \(h_{\mathcal{D}}+k\), where \(h_{\mathcal{D}}\) (resp. k) is the mesh size of the spatial (resp. time) discretization. This estimate is valid for discrete norms \({\mathbb{L}}^\infty(0,T;H^1_0(\Omega))\) and \({\mathcal W}^{1,\infty}(0,T;L^2(\Omega))\) under the regularity assumption \(u\in {\mathcal{C}}^2([0,T];{\mathcal{C}}^2(\overline{\Omega}))\) for the exact solution u. These error estimates are useful because they allow to obtain approximations to the exact solution and its first derivatives of order \(h_{\mathcal{D}}+k\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradji, A.: Some simples error estimates for finite volume approximation of parabolic equations. Comptes Rendus de l’Académie de Sciences, Paris 346(9-10), 571–574 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bradji, A., Fuhrmann, J.: Some error estimates in finite volume method for parabolic equations. In: Eymard, R., Hérard, J.-M. (eds.) Finite Volumes for Complex Applications V, Proceedings of the 5th International Symposium on Finite Volume for Complex Applications, pp. 233–240. Wiley, Chichester (2008)

    Google Scholar 

  3. Bradji, A., Fuhrmann, J.: Error estimates for fully and semi-discretization schemes on general nonconforming meshes of linear parabolic equations (in progress)

    Google Scholar 

  4. Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50, 38–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Americain Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  6. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis. In: Ciarlet, P.G., Lions, J.L. (eds.), vol. VII, pp. 723–1020 (2000)

    Google Scholar 

  7. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. (Advance Access published on June 16, 2009), doi:10.1093/imanum/drn084

    Google Scholar 

  8. Feistauer, M., Felcman, J., Straskraba, I.: Mathematical and Computational Methods for Compressible Flow. Oxford Science Publications, Oxford (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bradji, A., Fuhrmann, J. (2011). Some Error Estimates for the Discretization of Parabolic Equations on General Multidimensional Nonconforming Spatial Meshes. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, vol 6046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18466-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18466-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18465-9

  • Online ISBN: 978-3-642-18466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics