Nothing Special   »   [go: up one dir, main page]

Skip to main content

Upward Point-Set Embeddability

  • Conference paper
SOFSEM 2011: Theory and Practice of Computer Science (SOFSEM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6543))

Abstract

We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph D has an upward planar embedding into a point set S. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of k-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 1-switch tree), we show that not every k-switch tree admits an upward planar straight-line embedding into any convex point set, for any k ≥ 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward geometric graph embeddings into point sets. In: 18th International Symposium on Graph Drawing (GD 2010), LNCS (2010) (to appear)

    Google Scholar 

  2. Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. Computat. Geom. Th. Appl. 43, 219–232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom. Th. Appl. 23(3), 303–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Alg. Appl. 1(2), 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Alg. Appl. 10(2), 353–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  7. Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward point-set embeddability. Technical report. arXiv:1010:5937, http://arxiv.org/abs/1010:5937

  8. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Amer. Math. Mont. 98, 165–166 (1991)

    Article  Google Scholar 

  10. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A. (2011). Upward Point-Set Embeddability. In: Černá, I., et al. SOFSEM 2011: Theory and Practice of Computer Science. SOFSEM 2011. Lecture Notes in Computer Science, vol 6543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18381-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18381-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18380-5

  • Online ISBN: 978-3-642-18381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics