Nothing Special   »   [go: up one dir, main page]

Skip to main content

Probabilistic Büchi Automata with Non-extremal Acceptance Thresholds

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6538))

Abstract

This paper investigates the power of Probabilistic Büchi Automata (PBA) when the threshold probability of acceptance is non-extremal, i.e., is a value strictly between 0 and 1. Many practical randomized algorithms are designed to work under non-extremal threshold probabilities and thus it is important to study power of PBAs for such cases.

The paper presents a number of surprising expressiveness and decidability results for PBAs when the threshold probability is non-extremal. Some of these results sharply contrast with the results for extremal threshold probabilities. The paper also presents results for Hierarchical PBAs and for an interesting subclass of them called simple PBAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Baier, C., Größer, M.: Recognizing ω-regular languages with probabilistic automata. In: Proceedings of LICS, pp. 137–146 (2005)

    Google Scholar 

  3. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of randomization in finite state monitors. J. of the ACM 56(5) (2009)

    Google Scholar 

  4. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic Büchi automata with non-extremal acceptance thresholds. Technical Report LSV-10-19, LSV, ENS Cachan, France (2010)

    Google Scholar 

  6. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: Proceedings of FOCS, pp. 462–467 (1989)

    Google Scholar 

  7. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  8. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: STOC, pp. 365–377 (1982)

    Google Scholar 

  9. Größer, M.: Reduction Methods for Probabilistic Model Checking. PhD thesis, TU Dresden (2008)

    Google Scholar 

  10. Kemeny, J., Snell, J.: Denumerable Markov Chains. Springer, Heidelberg (1976)

    Book  MATH  Google Scholar 

  11. Paz, A.: Introduction to Probabilistic Automata. Academic Press, London (1971)

    MATH  Google Scholar 

  12. Rabin, M.O.: Probabilistic automata. Inf. and Control 6(3), 230–245 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Salomaa, A.: Formal Languages. Academic Press, London (1973)

    MATH  Google Scholar 

  14. Vardi, M.: Automatic verification of probabilistic concurrent systems. In: Proceedings of FOCS, pp. 327–338 (1985)

    Google Scholar 

  15. Varghese, G., Lynch, N.: A tradeoff between safety and liveness for randomized coordinated attack protocols. In: Proceedings of PODC, pp. 241–250 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chadha, R., Sistla, A.P., Viswanathan, M. (2011). Probabilistic Büchi Automata with Non-extremal Acceptance Thresholds. In: Jhala, R., Schmidt, D. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2011. Lecture Notes in Computer Science, vol 6538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18275-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18275-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18274-7

  • Online ISBN: 978-3-642-18275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics