Abstract
The simulator software SRSim is presented here. It is constructed from the molecular dynamics simulator LAMMPS and a set of extensions for modeling rule-based reaction systems. The aim of this software is coping with reaction networks that are combinatorially complex as well as spatially inhomogeneous. On the one hand, there is a combinatorial explosion of necessary species and reactions that occurs when complex biomolecules are allowed to interact, e.g. by polymerization or phosphorilation processes. On the other hand, diffusion over longer distances in the cell as well as the geometric structures of sophisticated macromolecules can further influence the dynamic behavior of a system. Addressing the mentioned demands, the SRSim simulation system features a stochastic, particle based, spatial simulation of Brownian Dynamics in three dimensions of a rule-based reaction system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)
Arkin, A.P.: Synthetic cell biology. Curr. Opin. Biotechnol. 12(6), 638–644 (2001)
Berg, O.G., von Hippel, P.H.: Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14(1), 131–158 (1985)
Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of virus shell assembly. Proc. Natl. Acad. Sci. U S A 91(16), 7732–7736 (1994)
Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)
Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)
Conrad, M., Zauner, K.P.: Dna as a vehicle for the self-assembly model of computing. Biosystems 45(1), 59–66 (1998)
Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B.N., Gilles, E.D.: A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7, 34 (2006)
Ermak, D.L., Mccammon, J.A.: Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69(4), 1352–1360 (1978)
Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. of biol. phys. and chem. 4, 64–73 (2004)
Fellermann, H., Rasmussen, S., Ziock, H., Solé, R.: Life cycle of a minimal protocell-a dissipative particle dynamics study. Artificial Life 13(4), 319–345 (2007)
Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. U S A 106(16), 6453 (2009)
Gruenert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics 11(1), 307 (2010)
Harris, L.A., Hogg, J.S., Faeder, J.R.: Compartmental rule-based modeling of biochemical systems. In: Rossetti, M., Hill, R., Johansson, B., Dunkin, A., Ingalls, R. (eds.) Proceedings of the 2009 Winter Simulation Conference (2009)
Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84(7), 783–794 (2003)
Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci STKE 2006(344) re6 (2006)
Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. Journal of Molecular Graphics 14, 33–38 (1996)
Ibrahim, B., Diekmann, S., Schmitt, E., Dittrich, P.: In-silico modeling of the mitotic spindle assembly checkpoint. PLoS ONE 3(2), e1555 (2008)
Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)
Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational growth grammars - a graph rewriting approach to dynamical systems with a dynamical structure. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming Paradigms, pp. 56–72. Springer, Berlin (2005)
Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)
Lemerle, C., Ventura, B.D., Serrano, L.: Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579(8), 1789–1794 (2005)
Lok, L., Brent, R.: Automatic generation of cellular reaction networks with moleculizer 1.0. Nature Biotech. 23(1), 131–136 (2005)
Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in p systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)
Minton, A.P.: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276(14), 10577–10580 (2001)
Nakamoto, R.K., Scanlon, J.A.B., Al-Shawi, M.K.: The rotary mechanism of the atp synthase. Archives of Biochemistry and Biophysics 476(1), 43–50 (2008); special Issue: Transport ATPases
Novère, N.L., Shimizu, T.S.: Stochsim: modelling of stochastic biomolecular processes. Bioinformatics 17(6), 575–576 (2001)
Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidelberg (2005)
Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Berlin (1998)
Păun, G.: Introduction to Membrane Computing. In: Applications of Membrane Computing, pp. 1–42. Springer, Berlin (2006)
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp.Phys. 117, 1–19 (1995)
Romero-Campero, F., Pérez-Jiménez, M.: Modelling gene expression control using p systems: The lac operon, a case study. BioSystems 91(3), 438–457 (2008)
Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), e424 (2004)
Schwartz, R., Shor, P.W., Prevelige, P.E., Berger, B.: Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J. 75(6), 2626–2636 (1998)
Slepoy, A., Thompson, A., Plimpton, S.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128, 205101 (2008)
Smaldon, J., Krasnogor, N., Alexander, C., Gheorghe, M.: Liposome logic. In: Rothlauf, F. (ed.) GECCO 2009: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 161–168. ACM Press, New York (2009)
Sweeney, B., Zhang, T., Schwartz, R.: Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophys. J. 94(3), 772 (2008)
Takahashi, K., Arjunan, S.N.V., Tomita, M.: Space in systems biology of signaling pathways–towards intracellular molecular crowding in silico. FEBS Lett. 579(8), 1783–1788 (2005)
Talcott, C., Dill, D.: The pathway logic assistant. In: Plotkin, G. (ed.) Proceedings of the Third International Workshop on Computational Methods in System Biology, pp. 228–239 (2005)
Verlet, L.: Computer ”experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)
Weber, C.H., Vincenz, C.: A docking model of key components of the disc complex: death domain superfamily interactions redefined. FEBS Lett. 492(3), 171–176 (2001)
Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)
Zhang, T., Rohlfs, R., Schwartz, R.: Implementation of a discrete event simulator for biological self-assembly systems. In: Proceedings of the 37th Winter Simulation Conference, Orlando, FL, USA, December 4-7, 2005, pp. 2223–2231. ACM, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grünert, G., Dittrich, P. (2010). Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. CMC 2010. Lecture Notes in Computer Science, vol 6501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18123-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-18123-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18122-1
Online ISBN: 978-3-642-18123-8
eBook Packages: Computer ScienceComputer Science (R0)