Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems

  • Conference paper
Membrane Computing (CMC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6501))

Included in the following conference series:

Abstract

The simulator software SRSim is presented here. It is constructed from the molecular dynamics simulator LAMMPS and a set of extensions for modeling rule-based reaction systems. The aim of this software is coping with reaction networks that are combinatorially complex as well as spatially inhomogeneous. On the one hand, there is a combinatorial explosion of necessary species and reactions that occurs when complex biomolecules are allowed to interact, e.g. by polymerization or phosphorilation processes. On the other hand, diffusion over longer distances in the cell as well as the geometric structures of sophisticated macromolecules can further influence the dynamic behavior of a system. Addressing the mentioned demands, the SRSim simulation system features a stochastic, particle based, spatial simulation of Brownian Dynamics in three dimensions of a rule-based reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Arkin, A.P.: Synthetic cell biology. Curr. Opin. Biotechnol. 12(6), 638–644 (2001)

    Article  Google Scholar 

  3. Berg, O.G., von Hippel, P.H.: Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14(1), 131–158 (1985)

    Article  Google Scholar 

  4. Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of virus shell assembly. Proc. Natl. Acad. Sci. U S A 91(16), 7732–7736 (1994)

    Article  MATH  Google Scholar 

  5. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)

    Article  Google Scholar 

  6. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Conrad, M., Zauner, K.P.: Dna as a vehicle for the self-assembly model of computing. Biosystems 45(1), 59–66 (1998)

    Article  Google Scholar 

  8. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B.N., Gilles, E.D.: A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7, 34 (2006)

    Article  Google Scholar 

  9. Ermak, D.L., Mccammon, J.A.: Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69(4), 1352–1360 (1978)

    Article  Google Scholar 

  10. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. of biol. phys. and chem. 4, 64–73 (2004)

    Article  MATH  Google Scholar 

  11. Fellermann, H., Rasmussen, S., Ziock, H., Solé, R.: Life cycle of a minimal protocell-a dissipative particle dynamics study. Artificial Life 13(4), 319–345 (2007)

    Article  Google Scholar 

  12. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. U S A 106(16), 6453 (2009)

    Article  Google Scholar 

  13. Gruenert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics 11(1), 307 (2010)

    Article  Google Scholar 

  14. Harris, L.A., Hogg, J.S., Faeder, J.R.: Compartmental rule-based modeling of biochemical systems. In: Rossetti, M., Hill, R., Johansson, B., Dunkin, A., Ingalls, R. (eds.) Proceedings of the 2009 Winter Simulation Conference (2009)

    Google Scholar 

  15. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84(7), 783–794 (2003)

    Article  Google Scholar 

  16. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci STKE 2006(344) re6 (2006)

    Google Scholar 

  17. Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. Journal of Molecular Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  18. Ibrahim, B., Diekmann, S., Schmitt, E., Dittrich, P.: In-silico modeling of the mitotic spindle assembly checkpoint. PLoS ONE 3(2), e1555 (2008)

    Article  Google Scholar 

  19. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)

    Article  Google Scholar 

  20. Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational growth grammars - a graph rewriting approach to dynamical systems with a dynamical structure. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming Paradigms, pp. 56–72. Springer, Berlin (2005)

    Chapter  Google Scholar 

  21. Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  22. Lemerle, C., Ventura, B.D., Serrano, L.: Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579(8), 1789–1794 (2005)

    Article  Google Scholar 

  23. Lok, L., Brent, R.: Automatic generation of cellular reaction networks with moleculizer 1.0. Nature Biotech. 23(1), 131–136 (2005)

    Article  Google Scholar 

  24. Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in p systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Minton, A.P.: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276(14), 10577–10580 (2001)

    Article  Google Scholar 

  26. Nakamoto, R.K., Scanlon, J.A.B., Al-Shawi, M.K.: The rotary mechanism of the atp synthase. Archives of Biochemistry and Biophysics 476(1), 43–50 (2008); special Issue: Transport ATPases

    Article  Google Scholar 

  27. Novère, N.L., Shimizu, T.S.: Stochsim: modelling of stochastic biomolecular processes. Bioinformatics 17(6), 575–576 (2001)

    Article  Google Scholar 

  28. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  29. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Păun, G.: Introduction to Membrane Computing. In: Applications of Membrane Computing, pp. 1–42. Springer, Berlin (2006)

    Google Scholar 

  31. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp.Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  32. Romero-Campero, F., Pérez-Jiménez, M.: Modelling gene expression control using p systems: The lac operon, a case study. BioSystems 91(3), 438–457 (2008)

    Article  Google Scholar 

  33. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), e424 (2004)

    Article  Google Scholar 

  34. Schwartz, R., Shor, P.W., Prevelige, P.E., Berger, B.: Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J. 75(6), 2626–2636 (1998)

    Article  Google Scholar 

  35. Slepoy, A., Thompson, A., Plimpton, S.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128, 205101 (2008)

    Article  Google Scholar 

  36. Smaldon, J., Krasnogor, N., Alexander, C., Gheorghe, M.: Liposome logic. In: Rothlauf, F. (ed.) GECCO 2009: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 161–168. ACM Press, New York (2009)

    Google Scholar 

  37. Sweeney, B., Zhang, T., Schwartz, R.: Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophys. J. 94(3), 772 (2008)

    Article  Google Scholar 

  38. Takahashi, K., Arjunan, S.N.V., Tomita, M.: Space in systems biology of signaling pathways–towards intracellular molecular crowding in silico. FEBS Lett. 579(8), 1783–1788 (2005)

    Article  Google Scholar 

  39. Talcott, C., Dill, D.: The pathway logic assistant. In: Plotkin, G. (ed.) Proceedings of the Third International Workshop on Computational Methods in System Biology, pp. 228–239 (2005)

    Google Scholar 

  40. Verlet, L.: Computer ”experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)

    Google Scholar 

  41. Weber, C.H., Vincenz, C.: A docking model of key components of the disc complex: death domain superfamily interactions redefined. FEBS Lett. 492(3), 171–176 (2001)

    Article  Google Scholar 

  42. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  43. Zhang, T., Rohlfs, R., Schwartz, R.: Implementation of a discrete event simulator for biological self-assembly systems. In: Proceedings of the 37th Winter Simulation Conference, Orlando, FL, USA, December 4-7, 2005, pp. 2223–2231. ACM, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grünert, G., Dittrich, P. (2010). Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. CMC 2010. Lecture Notes in Computer Science, vol 6501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18123-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18123-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18122-1

  • Online ISBN: 978-3-642-18123-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics