Abstract
This paper considers the problem of calculating dominating sets in networks with bounded degree. In these networks, the maximal degree of any node is bounded by Δ, which is usually significantly smaller than n, the total number of nodes in the system. Such networks arise in various settings of wireless and peer-to-peer communication. A trivial approach of choosing all nodes into the dominating set yields an algorithm with the approximation ratio of Δ + 1. We show that any deterministic algorithm with non-trivial approximation ratio requires Ω(log* n) rounds, meaning effectively that no o(Δ)-approximation deterministic algorithm with a running time independent of the size of the system may ever exist. On the positive side, we show two deterministic algorithms that achieve logΔ and 2logΔ-approximation in O(Δ3 + log* n) and O(Δ2logΔ + log* n) time, respectively. These algorithms rely on coloring rather than node IDs to break symmetry.
This work is partially supported by the Israeli Science Foundation grant 1247/09 and by the Technion Hasso Plattner Center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local 2-approximation algorithm for the vertex cover problem. In: DISC 2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg (2009)
Astrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 294–302 (2010)
Chen, Y.P., Liestman, A.L.: Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks. In: Proc. ACM Int. Symp. on Mob. Ad Hoc Networking and Computing (MobiHoc), pp. 165–172 (2002)
Chlebik, M., Chlebikova, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11) (2008)
Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)
Czyzowicz, J., Dobrev, S., Fevens, T., Gonzalez-Aguilar, H., Kranakis, E., Opatrny, J., Urrutia, J.: Local algorithms for dominating and connected dominating sets of unit disk graphs with location aware nodes. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 158–169. Springer, Heidelberg (2008)
Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dominating sets. In: Proc. IEEE Int. Conf. on Comm (ICC), pp. 376–380 (1997)
Dong, Q., Bejerano, Y.: Building robust nomadic wireless mesh networks using directional antennas. In: Proc. IEEE INFOCOM, pp. 1624–1632 (2008)
Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45, 314–318 (1998)
Ferro, E., Potorti, F.: Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. IEEE Wireless Communications 12(1), 12–26 (2005)
Friedman, R., Kogan, A.: Efficient power utilization in multi-radio wireless ad hoc networks. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 159–173. Springer, Heidelberg (2009)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. Ltd., New York (1979)
Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)
Han, B., Jia, W.: Clustering wireless ad hoc networks with weakly connected dominating set. Journal of Parallel and Distr. Computing 67(6), 727–737 (2007)
Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)
Jia, L., Rajaraman, R., Suel, T.: An efficient distributed algorithm for constructing small dominating sets. In: Proc. ACM Symp. on Principles of Distr. Comp (PODC), pp. 33–42 (2001)
Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Heidelberg (2003)
Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc. Symp. on Paral. in Algorithms and Architectures (SPAA), pp. 138–144 (2009)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC), pp. 300–309 (2004)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: Proc. ACM Symp. on Principles of Distr. Comp (PODC), pp. 60–68 (2005)
Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 980–989 (2006)
Lenzen, C., Wattenhofer, R.: Leveraging linial’s locality limit. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)
Liang, B., Haas, Z.J.: Virtual backbone generation and maintenance in ad hoc network mobility management. In: Proc. IEEE INFOCOM, pp. 1293–1302 (2000)
Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: Proc. ACM Symp. on Principles of Distr. Comp (PODC), pp. 183–192 (2002)
Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distributed Computing 14(2), 97–100 (2001)
Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadelphia (2000)
Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: distributed randomized TDMA scheduling for wireless ad-hoc networks. In: Proc. 7th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 190–201 (2006)
Sivakumar, R., Das, B., Bharghavan, V.: Spine routing in ad hoc networks. Cluster Computing 1(2), 237–248 (1998)
Wu, J., Dai, F., Gao, M., Stojmenovic, I.: On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks. Journal of Communications and Networks, 59–70 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Friedman, R., Kogan, A. (2011). Deterministic Dominating Set Construction in Networks with Bounded Degree. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds) Distributed Computing and Networking. ICDCN 2011. Lecture Notes in Computer Science, vol 6522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17679-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-17679-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17678-4
Online ISBN: 978-3-642-17679-1
eBook Packages: Computer ScienceComputer Science (R0)