Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deterministic Dominating Set Construction in Networks with Bounded Degree

  • Conference paper
Distributed Computing and Networking (ICDCN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6522))

Included in the following conference series:

Abstract

This paper considers the problem of calculating dominating sets in networks with bounded degree. In these networks, the maximal degree of any node is bounded by Δ, which is usually significantly smaller than n, the total number of nodes in the system. Such networks arise in various settings of wireless and peer-to-peer communication. A trivial approach of choosing all nodes into the dominating set yields an algorithm with the approximation ratio of Δ + 1. We show that any deterministic algorithm with non-trivial approximation ratio requires Ω(log* n) rounds, meaning effectively that no o(Δ)-approximation deterministic algorithm with a running time independent of the size of the system may ever exist. On the positive side, we show two deterministic algorithms that achieve logΔ and 2logΔ-approximation in O3 + log* n) and O2logΔ + log* n) time, respectively. These algorithms rely on coloring rather than node IDs to break symmetry.

This work is partially supported by the Israeli Science Foundation grant 1247/09 and by the Technion Hasso Plattner Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local 2-approximation algorithm for the vertex cover problem. In: DISC 2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Astrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 294–302 (2010)

    Google Scholar 

  3. Chen, Y.P., Liestman, A.L.: Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks. In: Proc. ACM Int. Symp. on Mob. Ad Hoc Networking and Computing (MobiHoc), pp. 165–172 (2002)

    Google Scholar 

  4. Chlebik, M., Chlebikova, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11) (2008)

    Google Scholar 

  5. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czyzowicz, J., Dobrev, S., Fevens, T., Gonzalez-Aguilar, H., Kranakis, E., Opatrny, J., Urrutia, J.: Local algorithms for dominating and connected dominating sets of unit disk graphs with location aware nodes. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 158–169. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dominating sets. In: Proc. IEEE Int. Conf. on Comm (ICC), pp. 376–380 (1997)

    Google Scholar 

  8. Dong, Q., Bejerano, Y.: Building robust nomadic wireless mesh networks using directional antennas. In: Proc. IEEE INFOCOM, pp. 1624–1632 (2008)

    Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45, 314–318 (1998)

    Article  MATH  Google Scholar 

  10. Ferro, E., Potorti, F.: Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. IEEE Wireless Communications 12(1), 12–26 (2005)

    Article  Google Scholar 

  11. Friedman, R., Kogan, A.: Efficient power utilization in multi-radio wireless ad hoc networks. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 159–173. Springer, Heidelberg (2009)

    Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. Ltd., New York (1979)

    Google Scholar 

  13. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20, 374–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, B., Jia, W.: Clustering wireless ad hoc networks with weakly connected dominating set. Journal of Parallel and Distr. Computing 67(6), 727–737 (2007)

    Article  MATH  Google Scholar 

  15. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Jia, L., Rajaraman, R., Suel, T.: An efficient distributed algorithm for constructing small dominating sets. In: Proc. ACM Symp. on Principles of Distr. Comp (PODC), pp. 33–42 (2001)

    Google Scholar 

  17. Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc. Symp. on Paral. in Algorithms and Architectures (SPAA), pp. 138–144 (2009)

    Google Scholar 

  19. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. ACM Symp. on Principles of Distr. Comp. (PODC), pp. 300–309 (2004)

    Google Scholar 

  20. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: Proc. ACM Symp. on Principles of Distr. Comp (PODC), pp. 60–68 (2005)

    Google Scholar 

  21. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 980–989 (2006)

    Google Scholar 

  22. Lenzen, C., Wattenhofer, R.: Leveraging linial’s locality limit. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Liang, B., Haas, Z.J.: Virtual backbone generation and maintenance in ad hoc network mobility management. In: Proc. IEEE INFOCOM, pp. 1293–1302 (2000)

    Google Scholar 

  24. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: Proc. ACM Symp. on Principles of Distr. Comp (PODC), pp. 183–192 (2002)

    Google Scholar 

  26. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distributed Computing 14(2), 97–100 (2001)

    Article  Google Scholar 

  27. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  28. Rhee, I., Warrier, A., Min, J., Xu, L.: DRAND: distributed randomized TDMA scheduling for wireless ad-hoc networks. In: Proc. 7th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 190–201 (2006)

    Google Scholar 

  29. Sivakumar, R., Das, B., Bharghavan, V.: Spine routing in ad hoc networks. Cluster Computing 1(2), 237–248 (1998)

    Article  Google Scholar 

  30. Wu, J., Dai, F., Gao, M., Stojmenovic, I.: On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks. Journal of Communications and Networks, 59–70 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedman, R., Kogan, A. (2011). Deterministic Dominating Set Construction in Networks with Bounded Degree. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds) Distributed Computing and Networking. ICDCN 2011. Lecture Notes in Computer Science, vol 6522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17679-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17679-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17678-4

  • Online ISBN: 978-3-642-17679-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics