Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzified Probabilistic Rough Measures in Image Segmentation

  • Conference paper
Signal Processing and Multimedia (MulGraB 2010, SIP 2010)

Abstract

Recent advances witnessed during widespread development of information systems that depend upon detailed data analysis, require more sophisticated data analysis procedures and algorithms. In the last decades, deeper insight into data structure has been made more precise by means of many innovative data analysis approaches. Rough Extended (Entropy) Framework presents recently devised algorithmic approach to data analysis based upon inspection of the data object assignment to clusters. Data objects belonging to clusters contribute to cluster approximations. Cluster approximations are assigned measures that directly make possible calculation of cluster roughness. In the next step, total data rough entropy measure is calculated on the base of the particular roughness. In the paper, in the Rough Extended (Entropy) Framework, a new family of the probabilistic rough (entropy) measures has been presented. The probabilistic approach has been extended into fuzzy domain by fuzzification of the probabilistic distances. The introduced solution seems to present promising area of data analysis, particulary suited in the area of image properties analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Malyszko, D., Stepaniuk, J.: Granular Multilevel Rough Entropy Thresholding in 2D Domain. In: 16th International Conference Intelligent Information Systems, IIS 2008, Zakopane, Poland, June 16-18, pp. 151–160 (2008)

    Google Scholar 

  2. Malyszko, D., Stepaniuk, J.: Standard and Fuzzy Rough Entropy Clustering Algorithms in Image Segmentation. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 409–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Malyszko, D., Stepaniuk, J.: Adaptive multilevel rough entropy evolutionary thresholding. Information Sciences 180(7), 1138–1158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Malyszko, D., Stepaniuk, J.: Adaptive Rough Entropy Clustering Algorithms in Image Segmentation. Fundamenta Informaticae 98(2-3), 199–231 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV 2001, vol. (2), pp. 416–423. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  6. Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 2509–2517 (2005)

    Article  Google Scholar 

  7. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)

    Google Scholar 

  9. Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27(2-3), 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Stepaniuk, J.: Rough–Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Slezak, D., Ziarko, W.: The investigation of the Bayesian rough set model. International Journal of Approximate Reasoning 40, 81–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Małyszko, D., Stepaniuk, J. (2010). Fuzzified Probabilistic Rough Measures in Image Segmentation. In: Kim, Th., Pal, S.K., Grosky, W.I., Pissinou, N., Shih, T.K., Ślęzak, D. (eds) Signal Processing and Multimedia. MulGraB SIP 2010 2010. Communications in Computer and Information Science, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17641-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17641-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17640-1

  • Online ISBN: 978-3-642-17641-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics